Skip to main content

Advertisement

Log in

New polyimide-based porous crosslinked beads by suspension polymerization: physical and chemical factors affecting their morphology

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Synthesis of a new partial-alicyclic copolyimide based on bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BOCA) is presented. This polymer was used to obtain porous microspheres by suspension polymerization method. It is copolymerized with N, N’- 4, 4′- diphenylmethanebismaleimide in the presence of two pairs of porogens: 1-methyl-2-pyrrolidone/benzyl alcohol, and 1,4 Dioxane/benzyl alcohol. Influence of different factors, such as diluents composition or crosslinker concentration, on the resulting polymer beads morphology is studied. Various characteristcis including the specific and apparent densities, porosity, pore volume, surface area and mean pore diameter are analyzed. Thermal behavior and tendency to swell in different organic diluents for some chosen samples are also determined. The best polymer beads, obtained in a reaction system with a solubility parameter value of 23.45 MPa ½ and a crosslinker concentration of 40 %, are thermally stable above 400 ºC, having a pore volume of 1.28 mL/g, a surface area of 74.20 m2/g and enhanced swelling properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dusek K (1982) Network formation by chain crosslinking (co)polymerization, in Developments in polymerization-3. In: Haward RN (ed) ScD. Publ. Appl. Science publisher in LTD, England

    Google Scholar 

  2. Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25(6):711–779

    Article  CAS  Google Scholar 

  3. Clarisse M, Queirуs Y, Barbosa C, Barbosa L, Lucas E (2012) Synthesis and Characterization of Polymeric Resins Based on Methyl Methacrylate and Divinylbenzene. Chemistry & Chemical Technology, The Journal 6(2):145–152

    Google Scholar 

  4. Gawdzik B, Sobiesiak M (2003) Chemical composition of plasma treated polyimide microspheres. Appl Surf Sci 214:52–55

    Article  CAS  Google Scholar 

  5. Gao JG, Zhang Y, Yu YF, Han YC, Zhang BZ, Gao CH (2011) Preparation of chitosan microspheres loading of 3,5-dihydroxy-4-i-propylstilbene and in vitro release. J Polym Res 18:1501–1508

    Article  CAS  Google Scholar 

  6. Kun KA, Kunin R (1968) Macroreticular resins. III. Formation of macroreticular styrene–divinylbenzene copolymers. J Polym Sci Part A-1:Polym Chem 6:2689–2701

    Article  CAS  Google Scholar 

  7. Sederel WL, De Jong GJ (1973) Styrene–divinylbenzene copolymers. Construction of porosity in styrene divinylbenzene matrices. J App Polym Sci 17(9):2835–2846

    Article  CAS  Google Scholar 

  8. Brooks BW (1990) Basis aspects and recent developement in suspension polymerisation. Makromol Chem, Macromol Symp 35/36:121–140

    Article  Google Scholar 

  9. Svec F, Frechet MJ (1996) New design of macroporous polymers and supports from separation to biocatalysis. Science 273:205–21

    Article  CAS  Google Scholar 

  10. Bortel E (1965) Porous ion exchangers. I. Porosity of styrene-divinylbenzene copolymers. Przemysl Chem 44:255–270

    CAS  Google Scholar 

  11. Nicolescu T-V, Meouche W, Branger C, Margaillan A, Sarbu A, Donescu D (2012) Tailor-made polymer beads for gallic acid recognition and separation. J Polym Res 19:2–13

    Article  Google Scholar 

  12. Flory PJ (1953) Principles of Polymer Chemistry. Press, Cornell University

    Google Scholar 

  13. Chen CW, Chen CY, Lin CL (2011) Preparation of monodisperse poly (methyl methacrylate)microspheres: effect of reaction parameters on particle formation, and optical performances of its diffusive agent application. J Polym Res 18:587–594

    Article  CAS  Google Scholar 

  14. Grochowicz M, Bartnicki A, Gawdzik B (2008) Preparation and Characterization of Porous Polymeric Microspheres Obtained from Multifunctional Methacrylate Monomers. J Polym Sci: Part A: Polym Chem 46(18):6165–6174

    Article  CAS  Google Scholar 

  15. Sroog CE (1991) Polyimides. Prog Polym Sci 16(4):561–694

    Article  CAS  Google Scholar 

  16. Mathews AS, Kim I, Ha CS (2007) Synthesis, characterization, and properties of fully aliphatic polyimides and their derivatives for microelectronics and optoelectronics applications. Macromol Res 15(2):114–128

    Article  CAS  Google Scholar 

  17. Wilson D, Stenzenberger HD, Hergenrother PM (1990) Polyimides. Chapman and Hall, New York

    Book  Google Scholar 

  18. Chisca S, Musteata VE, Stoica I, Sava I, Bruma M (2013) Effect of the chemical structure of aromatic-cycloaliphatic copolyimide films on their surface morphology, relaxation behavior and dielectric properties. J Polym Res 20:111–121

    Article  Google Scholar 

  19. Ree M (2006) High performance polyimides for applications in microelectronics and flat panel displays. Macromol Res 14(1):1–33

    Article  CAS  Google Scholar 

  20. Ando S (2004) Optical Properties of Fluorinated Polyimides and Their Applications to Optical Components and Waveguide Circuits. J Photopolym Sci Technol 17(2):219–232

    Article  CAS  Google Scholar 

  21. Cosutchi AI, Hulubei C, Stoica I, Ioan S (2011) A new approach for patterning epiclon-based polyimide precursor films using a lyotropic liquid crystal template. J Polym Res 18(6):2389–2402

    Article  CAS  Google Scholar 

  22. Mittal KL (1984) Polyimides: synthesis, characterization and applications, vol 1 & 2. Springer (Plenum Press), New York

    Book  Google Scholar 

  23. Ismail AF, Aziz F (2012) Chemical Cross-Linking Modifications of Polymeric Membranes for Gas Separation Applications, Chap. 11. In: Hilal N, Khayet M, Wright CJ (eds) Membrane Modification Technology and Applications. CRC Press, US

    Google Scholar 

  24. Takekoshi T (1996) In: Ghosh MK, Mittal KL (eds) Polyimides: Fundamentals and Applications, vol 1, 1st edn. Marcel Dekker, New York

    Google Scholar 

  25. Chen JC, Tseng WY, Tseng IH, Tsai MH (2011) High transparency and thermal stability of alicyclic polyimide with crosslinking structure by triallylamine. Adv Mater Res 287–290:1388–1396

    Article  Google Scholar 

  26. Ioan S, Hulubei C, Popovici D, Musteata VE (2013) Origin of dielectric response and conductivity of some alicyclic polyimides. Polym Eng Sci 53(7):1430–1447

    Article  CAS  Google Scholar 

  27. Kumar SV, Yu HC, Choi J, Kudo K, Jang YH, Chung CM (2011) Structure–property relationships for partially aliphatic polyimides. J Polym Res 18:1111–1117

    Article  CAS  Google Scholar 

  28. Chen G, Pei X, Liu J, Fang X (2013) Synthesis and properties of transparent polyimides derived from trans- and cis-1,4-bis(3,4-dicarboxyphenoxy)cyclohexane Dianhydrides. J Polym Res 20:159–169

    Article  Google Scholar 

  29. Hou Y, Chen G, Pei X, Fang X (2012) Synthesis and characterization of novel optically transparent and organosoluble polyimides based on diamines containing cyclohexane moiety. J Polym Res 19:9955–9963

    Article  Google Scholar 

  30. Barzic AI, Stoica I, Fifere N, Vlad CD, Hulubei C (2013) Morphological effects on transparency and absorption edges of some semi-alicyclic polyimides. J Polym Res 20:130–137

    Article  Google Scholar 

  31. Brock T, Sherrington DC, Swindell J (1994) Synthesis and characterisation of porous particulate polyimides. J Mater Chem 4(2):229–236

    Article  Google Scholar 

  32. Sherrington D (1998) Preparation, structure and morphology of polymer supports. Chem Commun 21:2275–2286

    Article  Google Scholar 

  33. Fu GD, Li GL, Neoh KG, Kang ET (2011) Hollow polymeric nanostructures—Synthesis, morphology and function. Prog Polym Sci 36(1):127–167

    Article  CAS  Google Scholar 

  34. Ishizaka T, Kasai H (2012) In: Abadie MJM (ed) High Performance Polymers - Polyimides Based - From Chemistry to Applications, Fabrication of Polyimide Porous Nanostructures for Low-k Materials. Novi Sad, InTech

    Google Scholar 

  35. Hren J, Polanc S, Kočevar M (2008) The synthesis and transformations of fused bicyclo[2.2.2]octenes. Special Issue Reviews and Accounts ARKIVOC 209–231 ISSN 1551–7012

  36. Ioan S, Cosutchi AI, Hulubei C, Macocinschi D, Ioanid G (2007) Surface and interfacial properties of poly(amic acid)s and polyimides. Polym Eng Sci 47(4):381–389

    Article  CAS  Google Scholar 

  37. Dix LR, Ebdon JR, Flint NJ, Hodge P, O’Dell R (1995) Chain extension and crosslinking of telechelic oligomers—I. Michael additions of bisamines to bismaleimides and bis(acetylene ketone)s. Eur Polym J 31(7):647–652

    Article  CAS  Google Scholar 

  38. Freeman ES, Carroll B (1958) The Application of Thermoanalytical Techniques to Reaction Kinetics: The Thermogravimetric Evaluation of the Kinetics of the Decomposition of Calcium Oxalate Monohydrate. J Phys Chem 62(4):394–397

    Article  CAS  Google Scholar 

  39. Brunauer S (1957) Adsorption of Gases and Vapors Princeton University Press. New Jersey Press, New York

    Google Scholar 

  40. Choi YS, Hong SR, Lee YM, Song KW, Park MH, Nam YS (1999) Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge Biomaterials 20(5):409–417

    CAS  Google Scholar 

  41. Park HY, Song IH, Kim JH, Kim WS (1998) Preparation of thermally denatured albumin gel and its pH-sensitive swelling. Int J Pharm 175(2):231–236

    Article  CAS  Google Scholar 

  42. ISO 25178–2:2012, Geometrical product specifications (GPS) - Surface texture: Areal - Part 2: Terms, definitions and surface texture parameters

  43. Nic M, Jirat J, Kosata B updates compiled by Jenkins A (1997) IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford. XML on-line corrected version: http://goldbook.iupac.org

  44. Ishida H, Wellinghoff ST, Baer E, Koenig JL (1980) Spectroscopic Studies of Poly [N, N’-bis(phenoxyphenyl)pyromellitimide]. 1. Structures of the Polyimide and Three Model Compounds. Macromolecules 13(4):826–834

    Article  CAS  Google Scholar 

  45. Kotoulas C, Kiparissides C (2006) A generalized population balance model for the prediction of particle size distribution in suspension polymerization reactors. Chem Eng Sci 61(2):332–346

    Article  CAS  Google Scholar 

  46. Chatzi EG, Kiparissides C (1994) Drop size distributions in high holdup fraction dispersion systems: effect of the degree of hydrolysis of PVA stabilizer. Chem Eng Sci 49(24, Part 2):5039–5052

    Article  CAS  Google Scholar 

  47. Jalili K, Abbasi F, Nasiri M, Ghasemi M, Haddadi NDE (2009) Preparation and Characterization of Expandable St/MMA Copolymers Produced by Suspension Polymerization. J Cell Plast 45:197–224

    Article  CAS  Google Scholar 

  48. Ioan S, Filimon A, Hulubei C, Stoica I, Dunca S (2013) Origin of rheological behavior and surface/interfacial properties of some semi-alicyclic polyimides for biomedical applications. Polym Bull 70(10):2873–2893

    Article  CAS  Google Scholar 

  49. Jahanzad F, Sajjadi S, Brooks BW (2005) Comparative Study of Particle Size in Suspension Polymerization and Corresponding Monomer − Water Dispersion. Ind Eng Chem Res 44(11):4112–4119

    Article  CAS  Google Scholar 

  50. Svec F, Frechet JMJ (1995) Temperature, a Simple and Efficient Tool for the Control of Pore Size Distribution in Macroporous Polymers. Macromolecules 28(22):7580–7582

    Article  CAS  Google Scholar 

  51. Koenhen DM, Smolders CA (1975) The determination of solubility parameters of solvents and polymers by means of correlations with other physical quantities. J Appl Polym Sci 19(4):1163–1179

    Article  CAS  Google Scholar 

  52. van Krevelen DW, te Nijenhuis K (2009) Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions. Elsevier Science, Amsterdam

    Google Scholar 

  53. Allan F, Barton M (1983) Handbook of Solubility Parameters, Ph.D. Thesis. CRC Press, 153–157

  54. Chompff A J, Newman S, Society A C (1971) Polymer networks: structure and mechanical properties: proceedings. Press, Plenum

    Google Scholar 

  55. Small PA (1953) Some factors affecting the solubility of polymers. J Appl Chem 3(2):71–80

    Article  CAS  Google Scholar 

  56. Stoica I, Barzic AI, Hulubei C, Timpu T (2013) Statistical Analysis on Morphology Development of Some Semi-alicyclic Polyimides Using Atomic Force Microscopy Microsc. Res Techn 76:503–513

    Article  CAS  Google Scholar 

  57. Marcu Puscas T, Signorini M, Molinari A, Straffelini G (2003) Image analysis investigation of the effect of the process variables on the porosity of sintered chromium steels. Mater Character 50(1):1–10

    Article  CAS  Google Scholar 

  58. Dickie RA, Labana SS, Bauer RS, Science ACSDoPM, Engineering (1988) Cross-Linked Polymers: Chemistry, Properties, and Applications. American Chemical Society

  59. Silverstein MS, Cameron NR, Hillmyer MA (2011) Porous Polymers. Wiley

  60. Calvino-Casilda V, Lopez-Peinado AJ, Vaganova E, Yitzchaik S, Pacios IE, Pierola IF (2008) Porosity Inherent to Chemically Crosslinked Polymers. Poly(N-vinylimidazole) Hydrogels. J Phys Chem B 112(10):2809–2817

    Article  CAS  Google Scholar 

  61. Poinescu I, Vlad C, Carpov A, Ioanid A (1988) On the structure of macroreticular styrene-divinylbenzene copolymers. Die Angewandte Makromolekulare Chemie 156(1):105–121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported from PN-II-ID-PCE-2011-3-0937 Project No. 302/5.10.2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hulubei.

Additional information

Paper dedicated to the 65th anniversary of “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hulubei, C., Vlad, C.D., Stoica, I. et al. New polyimide-based porous crosslinked beads by suspension polymerization: physical and chemical factors affecting their morphology. J Polym Res 21, 514 (2014). https://doi.org/10.1007/s10965-014-0514-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0514-4

Keywords

Navigation