Skip to main content

Advertisement

Log in

Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Composite electrospun nanofibers mats, as a nano-generator, were fabricated through one-step electrospinning method. The structure of fibers is composed of Poly(vinylidene fluoride), PVDF, as the matrix, and Zinc oxide (ZnO) nanoparticles; the nanocomposite were produced using electrospinning technique in order to have the benefit of piezoelectric properties and non-brittle behavior of ZnO and PVDF for the application in wearable electronic devices. Characteristics of these structures were evaluated by using X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM). Impedance and the electrical conductivity of the fabricated composites were also evaluated by Keithley instruments. Electrical response of samples was measured using an impedance analyzer made in Aims Lab (http://aims.aut.ac.ir) at room temperature. Results showed that incorporating the ZnO nanoparticles into the PVDF nanofibers improved the piezoelectric properties of samples compared to PVDF samples. The electrical output of composite samples was improved as high as 1.1 V compared with 0.351 V for the pure PVDF samples. These results imply promising applications, as an enhanced-efficiency energy-scavenging interface, for various wearable self-powered electrical devices and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fang J et al (2013) Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ Sci 6(7):2196–2202

    Article  CAS  Google Scholar 

  2. Paradiso JA, Starner T (2005) Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput 4(1):18–27

    Article  Google Scholar 

  3. Tian B et al (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164):885–889

    Article  CAS  Google Scholar 

  4. Li Y et al (2006) Nanowire electronic and optoelectronic devices. Mater Today 9(10):18–27

    Article  CAS  Google Scholar 

  5. Chen J et al (2005) Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310(5751):1171–1174

    Article  CAS  Google Scholar 

  6. Javey A et al (2003) Ballistic carbon nanotube field-effect transistors. Nature 424(6949):654–657

    Article  CAS  Google Scholar 

  7. Qin Y, Wang X, Wang ZL (2008) Microfibre–nanowire hybrid structure for energy scavenging. Nature 451(7180):809–813

    Article  CAS  Google Scholar 

  8. Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18(2):025009

    Article  Google Scholar 

  9. DuToit NE, Wardle BL (2007) Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA J 45(5):1126–1137

    Article  Google Scholar 

  10. Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16(3):R1

    Article  CAS  Google Scholar 

  11. Shu Y, Lien I (2006) Analysis of power output for piezoelectric energy harvesting systems. Smart Mater Struct 15(6):1499

    Article  CAS  Google Scholar 

  12. Beeby SP, Tudor MJ, White N (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175

    Article  CAS  Google Scholar 

  13. Guyomar D et al (2005) Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans Ultrason Ferroelectr Freq Control 52(4):584–595

    Article  Google Scholar 

  14. Sodano HA, Park G, Inman D (2004) Estimation of electric charge output for piezoelectric energy harvesting. Strain 40(2):49–58

    Article  Google Scholar 

  15. Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26(11):1131–1144

    Article  Google Scholar 

  16. Sodano HA, Inman DJ, Park G (2004) A review of power harvesting from vibration using piezoelectric materials. Shock Vib Dig 36(3):197–206

    Article  Google Scholar 

  17. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771):242–246

    Article  CAS  Google Scholar 

  18. Huang CT et al (2010) Single‐InN‐nanowire nanogenerator with up to 1 V Output Voltage. Adv Mater 22(36):4008–4013

    Article  CAS  Google Scholar 

  19. Huang C-T et al (2010) GaN nanowire arrays for high-output nanogenerators. J Am Chem Soc 132(13):4766–4771

    Article  CAS  Google Scholar 

  20. Lin YF et al (2008) Alternating the output of a CdS nanowire nanogenerator by a white‐light‐stimulated optoelectronic effect. Adv Mater 20(16):3127–3130

    Article  CAS  Google Scholar 

  21. Lu M-Y et al (2009) ZnO− ZnS heterojunction and ZnS nanowire arrays for electricity generation. ACS Nano 3(2):357–362

    Article  CAS  Google Scholar 

  22. Li Z et al (2010) Muscle‐driven in vivo nanogenerator. Adv Mater 22(23):2534–2537

    Article  CAS  Google Scholar 

  23. Yang R et al (2009) Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett 9(3):1201–1205

    Article  CAS  Google Scholar 

  24. Wang X et al (2009) Output of an ultrasonic wave-driven nanogenerator in a confined tube. Nano Res 2(3):177–182

    Article  CAS  Google Scholar 

  25. Wang X et al (2007) Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821):102–105

    Article  CAS  Google Scholar 

  26. Wang X et al (2007) Integrated nanogenerators in biofluid. Nano Lett 7(8):2475–2479

    Article  CAS  Google Scholar 

  27. Fang J, Wang X, Lin T (2011) Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes. J Mater Chem 21(30):11088–11091

    Article  CAS  Google Scholar 

  28. Liu Z et al (2013) Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sensors Actuators A Phys 193:13–24

    Article  CAS  Google Scholar 

  29. Chen X et al (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10(6):2133–2137

    Article  CAS  Google Scholar 

  30. Hansen BJ et al (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4(7):3647–3652

    Article  CAS  Google Scholar 

  31. Chang J et al (2012) Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1(3):356–371

    Article  CAS  Google Scholar 

  32. Lovinger AJ (1983) Ferroelectric polymers. Science 220(4602):1115–1121

    Article  CAS  Google Scholar 

  33. Chang C et al (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10(2):726–731

    Article  CAS  Google Scholar 

  34. Meyers FN et al (2013) Active sensing and damage detection using piezoelectric zinc oxide-based nanocomposites. Nanotechnology 24(18):185501

    Article  Google Scholar 

  35. Bae S-H et al (2013) Graphene-P (VDF-TrFE) multilayer film for flexible applications. ACS Nano 7(4):3130–3138

    Article  CAS  Google Scholar 

  36. Xi Y et al (2009) Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. J Mater Chem 19(48):9260–9264

    Article  CAS  Google Scholar 

  37. Loh K, Kim J, Lynch J (2008) Self-sensing and power harvesting carbon nanotube-composites based on piezoelectric polymers. Bridge maintenance, safety, management, health monitoring and informatics, IABMAS, 8

  38. Dagdeviren C, Papila M (2010) Dielectric behavior characterization of a fibrous‐ZnO/PVDF nanocomposite. Polym Compos 31(6):1003–1010

    Article  CAS  Google Scholar 

  39. Jia N et al (2015) Enhanced β-crystalline phase in poly (vinylidene fluoride) films by polydopamine-coated BaTiO 3 nanoparticles. Mater Lett 139:212–215

    Article  CAS  Google Scholar 

  40. Niu Y et al (2015) Enhanced dielectric performance of BaTiO 3/PVDF composites prepared by modified process for energy storage applications. IEEE Trans Ultrason Ferroelectr Freq Control 62(1):108–115

    Article  Google Scholar 

  41. Montazer M, Maali Amiri M (2014) ZnO nano reactor on textiles and polymers: ex situ and in situ synthesis, application, and characterization. J Phys Chem B 118(6):1453–1470

    Article  CAS  Google Scholar 

  42. Trolier-McKinstry S, Muralt P (2004) Thin film piezoelectrics for MEMS. J Electroceram 12(1–2):7–17

    Article  CAS  Google Scholar 

  43. Gheibi A et al (2014) Piezoelectric electrospun nanofibrous materials for self-powering wearable electronic textiles applications. J Polym Res 21(7):1–7

    Article  Google Scholar 

  44. Gheibi A et al (2014) Electrical power generation from piezoelectric electrospun nanofibers membranes: electrospinning parameters optimization and effect of membranes thickness on output electrical voltage. J Polym Res 21(11):1–14

    Article  Google Scholar 

  45. Persano L et al (2013) High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene). Nat Commun 4:1633

    Article  Google Scholar 

  46. Satapathy S et al (2011) Effect of annealing on the phase transition in poly (vinylidene fluoride) films prepared using polar solvent. Bull Mater Sci 34(4):727–733

    Article  CAS  Google Scholar 

  47. Choi S-S et al (2004) Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim Acta 50(2):339–343

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support provided by the ATMT Research Institute, Amirkabir University of Technology and INSF (Grant No. 92036082) are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roohollah Bagherzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorayani Bafqi, M., Bagherzadeh, R. & Latifi, M. Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency. J Polym Res 22, 130 (2015). https://doi.org/10.1007/s10965-015-0765-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0765-8

Keyword

Navigation