Skip to main content
Log in

Cyclodextrin-grafted thiacalix [4]arene netty polymer based on the click chemistry: preparation and efficient adsorption for organic dyes

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

By reacting cyclodextrin-grafted thiacalix [4]arene derivative 9 containing three alkynyl groups with bis-azido compound 6, the first example of cyclodextrin-grafted thiacalix [4]arene netty polymer 10 was designed and prepared by the click chemistry in yield of 76 %. Its structure was confirmed by elemental analysis, 1H NMR spectrum, FTIR spectrum and XRD curve. The M n of polymer 10 was 48,677, indicating average approximately 22 units of compound 9 in each polymer molecule. Its SEM image showed porous and loose morphology. Adsorption experiments of polymer 10 indicated that it possessed excellent adsorption capacities for both cationic and anionic dyes [Orange G sodium salt (OG), Brilliant ponceau 5R (BP), Victoria blue B (VB), Crystal violet (CV), Neutral red (NR) and Methylene blue (MB)]. The highest adsorption capacities for VB, CV, NR and MB were 5.821, 6.825, 6.135 and 5.381 mmol/g, respectively. Adsorption kinetics and isotherms analysis suggested that all the adsorption processes were exothermic and spontaneous. The adsorption processes obeyed pseudo second-order model and the Langmuir isotherm equation. The adsorption abilities of polymer 10 at pH values 3–11 were keep stable between 1.5–4 mmol/g. The adsorption abilities for anionic dyes decreased with the increase of pH values but opposite phenomena for cationic dyes. Polymer 10 showed good reused adsorption property after desorption in five times’ cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wong Y, Yu J (1991) Laccase-catalyzed decolorization of synthetic dyes. Water Res 33:3512–3520

    Article  Google Scholar 

  2. Bumpus J (1995) Microbial degradation of health risk compounds. In: Singh VP (ed) Inbiotransformations: Microbial degradation of azo dyes. Elsevier Science BV, Amsterdam, pp. 157–176

    Google Scholar 

  3. Peternel IT, Koprivanac N, Bozic AML, Kusic HM (2007) Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution. J Hazard Mater 148:477–484

    Article  CAS  Google Scholar 

  4. Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447

    Article  CAS  Google Scholar 

  5. Dhodapkar R, Pande NNR, Nandy T, Devotta S (2007) Adsorption of cationic dyes on jalshakti (R), super absorbent polymer and photocatalytic regeneration of the adsorbent. React Funct Polym 67:540–548

    Article  CAS  Google Scholar 

  6. Haider S, Binagag F, Haider A, Al-Masry WA (2014) Electrospun oxime-grafted-polyacrylonitrile nanofiber membrane and its application to the adsorption of dyes. J Polym Res 21:371–384

    Article  Google Scholar 

  7. Ansari R, Keivani MB, Ansari R (2011) Application of polyaniline nanolayer composite for removal of tartrazine dye from aqueous solutions. J Polym Res 18:1931–1939

    Article  CAS  Google Scholar 

  8. Dabrowski A (2001) Adsorption - from theory to practice. Adv Colloid Interf Sci 93:135–224

    Article  CAS  Google Scholar 

  9. Akceylan E, Bahadir M, Yilmaz M (2009) Removal efficiency of a calix[4]arene-based polymer for water-soluble carcinogenic direct azo dyes and aromatic amines. J Hazard Mater 162:960–966

    Article  CAS  Google Scholar 

  10. Yilmaz A, Yilmaz E, Yilmaz M (2007) Removal of azo dyes from aqueous solutions using calix[4]arene and cyclodextrin. Dyes Pigments 74:54–60

    Article  CAS  Google Scholar 

  11. Kamboh MA, Solangi IB, Memon S (2011) Synthesis and application of p-tert-butylcalix[8]arene immobilized material for the removal of azo dyes. J Hazard Mater 186:651–656

    Article  CAS  Google Scholar 

  12. Chen M, Shang T, Fang W, Diao G (2011) Study on adsorption and desorption properties of the starch grafted p-tert-butyl-calix[n]arene for butyl rhodamine B solution. Hazard Mater 185:914–920

    Article  CAS  Google Scholar 

  13. Yang FF, Liu WW, Xie JW, Bai XY, Guo HY (2013) Novel deep-cavity calix[4]arene derivatives with s-triazine conjugate systems: synthesis and complexation for dyes. J Incl Phenom Macrocycl Chem 76:311–316

    Article  CAS  Google Scholar 

  14. Yang FF, Zhang YM, Guo HY, Wei XL (2013) High efficient liquid membrane transport of dyes using calix[4]arene-linked triphenylene dimers as carriers. Sep Sci Technol 48:1565–1571

    Article  CAS  Google Scholar 

  15. Bai XY, Yang FF, Xie JW, Guo HY (2013) Novel 1,2-3,4-bridged and 1,3-bridged calix[4]arene based on large s-triazine conjugate systems: synthesis and complexation for dyes. J Macromol Sci A 50:334–339

    Article  CAS  Google Scholar 

  16. Shaikh M, Swamy YM, Pal H (2013) Supramolecular host–guest interaction of acridine dye with cyclodextrin macrocycles: photophysical, pKa shift and quenching study. J Photoch Photobio A 285:41–50

    Article  Google Scholar 

  17. Liu Y, Kang SZ, Zhang HY (2001) Synthesis of cyclodextrin derivative bearing a cyclohexylamino moiety and its inclusion complexation with organic dye molecules. Microchem 70:115–121

    Article  CAS  Google Scholar 

  18. Arun KT, Jayaram DT, Avirah RR, Ramaiah D (2011) β-cyclodextrin as a photosensitizer carrier: effect on photophysical properties and chemical reactivity of squaraine dyes. J Phys Chem B 115:7122–7128

    Article  CAS  Google Scholar 

  19. Liu Y, Chen Y (2006) Cooperative binding and multiple recognition by bridged bis(β-cyclodextrin)s with functional linkers. Accounts Chem Res 39:681–699

    Article  CAS  Google Scholar 

  20. Liu Y, Chen Y, Li L, Huang G, You CC, Zhang HY, Wada T, Inoue Y (2001) Cooperative multiple recognition by novel calix[4]arene-tethered β-cyclodextrin and calix[4]arene-bridged bis(β-cyclodextrin). J Org Chem 66:7209–7215

    Article  CAS  Google Scholar 

  21. Liu Y, Li B, You CC, Wada T, Inoue Y (2001) Molecular recognition studies on supramolecular systems. 32. Molecular recognition of dyes by organoselenium-bridged bis(β-cyclodextrin)s. J Org Chem 66:225–232

    Article  CAS  Google Scholar 

  22. Zhang HC, Hao AY, Shen J (2008) Progress in cyclodextrin-calix[n]arene and prospect of its future development. Chin J Org Chem 28:954–963

    CAS  Google Scholar 

  23. Souchon V, Maisonneuve S, David O, Leray I, Xie J, Valeur B (2008) Photophysics of cyclic multichromophoric systems based on β-cyclodextrin and calix[4]arene with appended pyridin-2′-yl-1,2,3-triazole groups. Photoch Photobio Sci 7:1323–1331

    Article  CAS  Google Scholar 

  24. Baruah U, Gogoi N, Majumdar G, Chowdhury D (2015) β-cyclodextrin and calix[4]arene-25,26,27,28-tetrol capped carbondots for selective and sensitive detection of fluoride. Carbohyd Polym 117:377–383

    Article  CAS  Google Scholar 

  25. Mulder A, Auletta T, Sartori A, Ciotto SD, Casnati A, Ungaro R, Huskens J, Reinhoudt DN (2004) Divalent binding of a bis(adamantyl)-functionalized calix[4]arene to β-cyclodextrin-based hosts: an experimental and theoretical study on multivalent binding in solution and at self-assembled monolayers. J Am Chem Soc 126:6627–6636

    Article  CAS  Google Scholar 

  26. Krause-Heuer AM, Wheate NJ, Tilby MJ, Pearson DG, Ottley CJ, Aldrich-Wright JR (2008) Substituted β-cyclodextrin and calix[4]arene as encapsulatory vehicles for platinum(II)-based DNA intercalators. Inorg Chem 47:6880–6888

    Article  CAS  Google Scholar 

  27. Kamboh MA, Solangi IB, Sherazi STH (2011) A highly efficient calix[4]arene based resin for the removal of azo dyes. Desalination 268:83–89

    Article  CAS  Google Scholar 

  28. Guo HY, Yang FF, Chai XF, Jiao ZY, Li CC (2012) Synthesis of novel calix[6]-1,4-crown-based netty polymer and its excellent adsorption capabilities for aniline derivatives. Iran Polym J 21:451–456

    Article  CAS  Google Scholar 

  29. Yang FF, Huang ZS, Zhang XY, Guo HY (2010) Thiacalix[4]amido-based netty polymers: novel sorbents for heavy metal cations and derivatives of aniline. Iran Polym J 19:309–318

    CAS  Google Scholar 

  30. Guo HY, Yang FF, Zhang YM, Di XD (2015) Facile synthesis of mono- and polytopic β-cyclodextrin aromatic aldehydes by click chemistry. Synth Commun 3:338–347

    Article  Google Scholar 

  31. Guo HY, Yang FF, Jiao ZY, Lin JR (2013) Click synthesis and dyes extraction capabilities of novel thiacalix[4]arene derivatives with triazole groups and hydrogen bond groups. Chin Chem Lett 24:450–452

    Article  CAS  Google Scholar 

  32. Zhan JY, Tian DM, Li HB (2009) Synthesis of calix[4]crowns containing soft and hard ion binding sites via click chemistry. New J Chem 33:725–728

    Article  CAS  Google Scholar 

  33. Chen AH, Chen SM (2009) Biosorption of azo dyes from aqueous solution by glutaraldehyde-crosslinked chitosans. J Hazard Mater 172:1111–1121

    Article  CAS  Google Scholar 

  34. Shaker MA, Yakout AA (2016) Optimization, isotherm, kinetic and thermodynamic studies of Pb(II) ions adsorption onto N-maleated chitosan-immobilized TiO2 nanoparticles from aqueous media. Spectrochim Acta A Mol Biomol Spectrosc 154:145–156

    Article  CAS  Google Scholar 

  35. Yuan YC, Zhang MQ, Rong MZ (2005) Study on the adsorption behavior of crosslinked chitosan for Ni(II). Acta Chimica Sinca 63:1753–1759

    CAS  Google Scholar 

  36. Wang ZH, Xiang B, Cheng RM, Li YJ (2010) Behaviors and mechanism of acid dyes sorption onto diethylenetriamine-modified native and enzymatic hydrolysis starch. J Hazard Mater 180:224–232

    Article  Google Scholar 

  37. Chiou MS, Li HY (2002) Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. J Hazard Mater 93:233–248

    Article  CAS  Google Scholar 

  38. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Hazard Mater 40:1361–1403

    CAS  Google Scholar 

  39. Giles CH, Smith D, Huitson A (1974) General treatment and classification of solute adsorption-isotherm. 1. Theoretical. J Colloid Interf Sci 47:755–765

    Article  CAS  Google Scholar 

  40. Chiou MS, Ho PY, Li HY (2004) Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes Pigments 60:69–84

    Article  CAS  Google Scholar 

  41. Chiou MS, Chuang GS (2006) Competitive adsorption of dye in acid solutions on chemically metanil yellow and RB15 cross-linked chitosan beads. Chemosphere 62:731–740

    Article  CAS  Google Scholar 

  42. Elwakeel KZ (2009) Removal of reactive black 5 from aqueous solutions using magnetic chitosan resins. J Hazard Mater 167:383–392

    Article  CAS  Google Scholar 

  43. Yang FF, Bai XY, Xu BT, Guo HY (2013) Triphenylene-modified chitosan: novel high efficient sorbent for cationic and anionic dyes. Cellulose 20:895–906

    Article  CAS  Google Scholar 

  44. Yoshida H, Okamoto A, Kataoka T (1993) Adsorption of acid dye on cross-linked chitosan fibers – equilibria. Chem Eng J 48:2267–2272

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (No: 21406036), Fujian Natural Science Foundation of China (No. 2014 J01034), Key projects of science and technology of Fujian province (2014 N0025) and the Program for Innovative Research Team in Science and Technology in Fujian Province University were greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fafu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Guo, H., Yang, F. et al. Cyclodextrin-grafted thiacalix [4]arene netty polymer based on the click chemistry: preparation and efficient adsorption for organic dyes. J Polym Res 23, 28 (2016). https://doi.org/10.1007/s10965-016-0920-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0920-x

Keywords

Navigation