Skip to main content
Log in

Some properties of xanthan gum in aqueous solutions: effect of temperature and pH

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The properties of xanthan gum (XG) aqueous solutions were investigated by using viscometric, electrokinetic and surface tension measurements. The effects of polymer concentration, temperature and pH on the viscosity of the XG solutions were evaluated and discussed. Zeta potential data determined for XG solutions in water in the temperature range of 15–45 °C corroborated with the results obtained from the viscometric investigations suggest the occurence of conformational changes above 36 °C. The activation energy of flow and that associated with the electrophoretic migration of the charged particles were estimated for XG solutions in water. In acid medium, xanthan gum determines a slight decrease of the surface tension of pure water at all investigated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kang KS, Cottrell IW (1979) In: Peppler HJ, Perlman D (eds) Microbial technology: microbial processes, vol 1. Academic, New York

    Google Scholar 

  2. Lachke A (2004) Resonance 9:25–33

    Article  Google Scholar 

  3. Sandvick EI, Merker JM (1977) In: Sandford P, Laskin A (eds) Application of Xanthan gum for enhanced oil recovery, extra cellular microbial polysaccharides. ACS Symp Series Washington DC

  4. Ungeheuer S, Bewersdorff H-W, Singh RP (1989) J Appl Polym Sci 37:2933–2948

    Article  CAS  Google Scholar 

  5. Bercea M, Darie RN, Morariu S (2013) Rev Roum Chim 58:189–196

    CAS  Google Scholar 

  6. Challen IA (1993) In: Nishinari K, Doi E (eds) Food hydrocolloids: structures, properties, and functions. Plenum Press, New York

    Google Scholar 

  7. Kennedy JF, Bradshaw IJ (1984) Prog Ind Microbiol 19:319–371

    CAS  Google Scholar 

  8. Sato T, Kojima S, Norisuye T, Fujita H (1984) Polym J 16:423–429

    Article  CAS  Google Scholar 

  9. Sato T, Norisuye T, Fujita H (1984) Polym J 16:341–350

    Article  CAS  Google Scholar 

  10. Gulrez Syed KH, Al-Assaf S, Fang Y, Phillips Glyn O, Gunning AP (2012) Carbohydr Polym 90:1235–1243

    Article  Google Scholar 

  11. Paradossi G, Brant DA (1982) Macromolecules 15:874–879

    Article  CAS  Google Scholar 

  12. Milas M, Rinaudo M, Tinland B (1985) Polym Bull 14:157–164

    Article  CAS  Google Scholar 

  13. Rochefort E, Middleman S (1987) J Rheol 31:337–369

    Article  CAS  Google Scholar 

  14. Tinland B, Rinaudo M (1989) Macromolecules 22:1863–1865

    Article  CAS  Google Scholar 

  15. Brunchi C-E, Morariu S, Bercea M (2014) Colloids Surf B 122:512–519

    Article  CAS  Google Scholar 

  16. Bercea M, Simionescu BC (2002) Rev Roum Chim 47:155–164

    CAS  Google Scholar 

  17. Budtova T, Navard P (2015) Nord Pulp Pap Res J 30:99–104

    Article  CAS  Google Scholar 

  18. Morariu S, Brunchi C-E, Hulubei C, Bercea M (2011) Ind Eng Chem Res 50:9451–9455

    Article  CAS  Google Scholar 

  19. Speers RA, Tung MA (1986) J Food Sci 51:96–98

    Article  CAS  Google Scholar 

  20. Banerjee P, Mukherjee I, Bhattacharya S, Datta S, Moulik SP, Sarka D (2009) Langmuir 25:11647–11656

    Article  CAS  Google Scholar 

  21. Phillips GO, Williams PA (2000) Handbook of hydrocolloids. Woodhead Publishing, Cambridge

    Google Scholar 

  22. Rohindra DR, Lata RA, Coll RK (2012) Eur J Phys 33:1457–1464

    Article  Google Scholar 

  23. Paoletti S, Cesaro A, Delben F (1983) Carbohydr Res 123:173–178

    Article  CAS  Google Scholar 

  24. Liu W, Sato T, Norisuye N, Fujita H (1987) Carbohydr Res 160:267–281

    Article  CAS  Google Scholar 

  25. Stokke BT, Christensen BE, Smidsrød O (1998) In: Dumitru S (ed) Polysaccharides: structural diversity and functional versatility. Marcel Dekker, New York

    Google Scholar 

  26. Jones SA, Goodall DM, Cutler AN, Norton IT (1987) Eur Biophys J 15:185–191

    Article  CAS  Google Scholar 

  27. Bordi F, Cametti C, Paradossi G (1996) J Phys Chem 100:7148–7154

    Article  CAS  Google Scholar 

  28. Manning GS (1969) J Chem Phys 51:924–933

    Article  CAS  Google Scholar 

  29. Camesano TA, Wilkinson KJ (2011) Biomacromolecules 2:1184–1191

    Article  Google Scholar 

  30. Moffat J, Morris VJ, Al-Assaf S, Gunning AP (2016) Carbohydr Polym 148:380–389

    Article  CAS  Google Scholar 

  31. M-Ho O, So J-H, Yang S-M (1999) J Colloid Interface Sci 216:320–328

    Article  Google Scholar 

  32. Shiroodi SG, Lo YM (2015) J Dairy Res 82:506–512

    Article  CAS  Google Scholar 

  33. Harnsilawat T, Pongsawatmanit R, McClements DJ (2006) Food Hydrocoll 20:577–585

    Article  CAS  Google Scholar 

  34. Bueno VB, Bentini R, Catalani LH, Petri DFS (2013) Carbohydr Polym 92:1091–1099

    Article  CAS  Google Scholar 

  35. Bueno VB, Petri DFS (2014) Carbohydr Polym 101:897–904

    Article  CAS  Google Scholar 

  36. García-Ochoa F, Santos VE, Casas JA, Gómez E (2000) Biotechnol Adv 18:549–579

    Article  Google Scholar 

  37. Bejenariu A, Popa M, Picton L, Le Cerf D (2010) Rev Roum Chim 55:147–152

    CAS  Google Scholar 

  38. Chibowski E, Wiacek A, Holysz L, Terpilowski K (2005) Langmuir 21:7662–7671

    Article  CAS  Google Scholar 

  39. Morariu S, Brunchi C-E, Bercea M (2012) Ind Eng Chem Res 51:12959–12966

    Article  CAS  Google Scholar 

  40. Nita LE, Chiriac AP, Bercea M, Neamtu I (2011) Colloids Surf A 374:121–128

    Article  CAS  Google Scholar 

  41. Ghimici L, Brunchi C-E (2013) Sep Purif Technol 103:306–312

    Article  CAS  Google Scholar 

  42. Cottet H, Gareil P (2001) Electrophoresis 22:684–691

    Article  CAS  Google Scholar 

  43. Oddy MH, Santiago JG (2004) J Colloid Interface Sci 269:192–204

    Article  CAS  Google Scholar 

  44. Mac Farlane R Jr, Fuoss RM (1957) J Polym Sci A 23:403–420

    CAS  Google Scholar 

  45. Abentroth Klaic PM, Nunes AM, da Silveira MA, Vendruscolo CT, Ribeirob AS (2011) Carbohydr Polym 83:1895–1900

    Article  Google Scholar 

  46. Jenkins R (1999) X – ray fluorescence spectrometry. Wiley Interscience, New York

    Book  Google Scholar 

  47. Romero CM, Páez MS, Miranda JA, Hernández DJ, Oviedo LE (2007) Fluid Phase Equilib 258:67–72

    Article  CAS  Google Scholar 

  48. Álvarez E (1997) J Chem Eng Data 42:957–960

    Article  Google Scholar 

  49. Wang P, Anderko A, Young RD (2011) Ind Eng Chem Res 50:4086–4098

    Article  CAS  Google Scholar 

  50. Papalamprou EM, Makri EA, Kiosseoglou VD, Doxastakis GI (2005) J Sci Food Agric 85:1967–1973

    Article  CAS  Google Scholar 

  51. Secouard S, Malhiac C, Grisel M (2006) Flavour Fragance J 21:8–12

    Article  CAS  Google Scholar 

  52. Young SL, Torres A (1989) J Food Hydrocoll 3:365–377

    Article  CAS  Google Scholar 

  53. Prud’homme R, Long RE (1983) J Colloid Interface Sci 93:274–276

    Article  Google Scholar 

  54. Brunchi C-E, Ghimici L (2013) In: Bercea M (ed) Polymer materials with smart properties. Chapter 7. Nova Sci Pub: New York

  55. Draganescu D, Silion M, Ignat I, Sarghie C, Popa MI (2013) Cell Chem Technol 47:231–238

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN–II–ID–PCE–2011–3–0199 (contract 300/2011). The authors thank to Dr. Carmen Racles from “Petru Poni” Institute of Macromolecular Chemistry, Iasi, for the useful discussions concerning the surface tension of polymer solutions. Paper dedicated to the 150th anniversary of the Romanian Academy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina-Eliza Brunchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunchi, CE., Bercea, M., Morariu, S. et al. Some properties of xanthan gum in aqueous solutions: effect of temperature and pH. J Polym Res 23, 123 (2016). https://doi.org/10.1007/s10965-016-1015-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1015-4

Keywords

Navigation