Skip to main content
Log in

Synthesis, characterisation and potential application of deoxycholic acid carboxymethyl chitosan as a carrier agent for rotenone

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the present study, deoxycholic acid carboxymethyl chitosan (DACMC) was synthesised via a two-step reaction, namely carboxymethylation and alkylation. Fourier Transform Infrared (FTIR) Spectrometer, Proton Nuclear Magnetic Resonance (1H NMR) Spectrometer, Transmission Electron Microscope (TEM) and Thermogravimetric Analyser (TGA) were used to characterise DACMC. Spherical self-aggregates of DACMC micelles with the size ranging from 91.3 to 140.0 nm was observed. DACMC was soluble in pH range studied (1–13), except pH 4. DACMC micelles were formed at critical concentration (CMC) value of 0.468 mg/mL. The ability of DACMC to encapsulate and load rotenone was determined at different weight ratios. The highest value of encapsulation efficiency (EE%) (more than 98%) was obtained for weight ratio of 100:1 (DACMC:Rotenone). The in vitro release data of rotenone-loaded DACMC followed Ritger and Peppas Case II transport mechanism. Results from this study highlight the potential of DACMC to reduce organic solvent application in water-insoluble pesticide production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pretty J (2005) The pesticide detox. Earthscan, United Kingdom

    Google Scholar 

  2. Alavanja MCR (2009). Rev Environ Health 24:303–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ortiz-hernández ML, Sánchez-salinas E, Olvera-velona A, Folch-mallol JL (2011) Pesticides in the environment : impacts and their biodegradation as a strategy for residues treatment. Pestic - Formul Eff Fate. https://doi.org/10.5772/13534

  4. Pant M, Dubey S, Patanjali PK (2016) Herbal Insecticides, Repellents and Biomedicines: Effectiveness and Commercialization https://doi.org/10.1007/978-81-322-2704-5

  5. El-Wakeil NE, El-Wakeil NE (2013) Gesunde Pflanz 65:125–149

    Article  CAS  Google Scholar 

  6. Adeyemi MMH (2010) African J Pure Appl Chem 4:243–246

    CAS  Google Scholar 

  7. Gonzalez-coloma A, Agrarias-ccma IDC (2010) 3. 09 Natural Product-Based Biopesticides for Insect Control

  8. Liu T-X, Xu H-H, Luo W-C (2006) Adv Phytomedicine 3:171–197

    Article  Google Scholar 

  9. Lao S-B, Zhang Z-X, Xu H-H, Jiang G-B (2010) Carbohydr Polym 82:1136–1142

    Article  CAS  Google Scholar 

  10. Kashyap PL, Xiang X, Heiden P (2015) Int J Biol Macromol 77:36–51

    Article  CAS  PubMed  Google Scholar 

  11. Wang X-L, Zhai Y-L, Tang D-L, Liu G-L, Wang Y-Z (2012) J Polym Res 19:9946

    Article  CAS  Google Scholar 

  12. Hu Y, He X, Lei L, Liang S, Qiu G, Hu X (2008) Carbohydr Polym 74:220–227

    Article  CAS  Google Scholar 

  13. Wang F, Zhang D, Duan C, Jia L, Feng F, Liu Y, Wang Y, Hao L, Zhang Q (2011) Carbohydr Polym 84:1192–1200

    Article  CAS  Google Scholar 

  14. Gao FP, Zhang HZ, Liu LR, Wang Y-S, Jiang Q, Yang X-D, Zhang Q-Q (2008) Carbohydr Polym 71:606–613

    Article  CAS  Google Scholar 

  15. Kamari A, Aljafree NFA, Yusoff SNM (2016) Int J Biol Macromol 88:263–272

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Zhang S, Meng X, Chen X, Ren G (2011) Carbohydr Polym 83:130–136

    Article  CAS  Google Scholar 

  17. Chen X-G, Park H-J (2003) Carbohydr Polym 53:355–359

    Article  CAS  Google Scholar 

  18. Zhang J, Li M, Fan T, Xu Q, Wu Y, Chen C, Huang Q (2013) J Polym Res 20:107

    Article  CAS  Google Scholar 

  19. Chen X, Xu H, Yang W, Liu S (2009) J Photochem Photobiol B Biol 95:93–100

    Article  CAS  Google Scholar 

  20. Kumar S, Chauhan N, Gopal M, Kumar R, Dilbaghi N (2015) Int J Biol Macromol 81:631–637

    Article  CAS  PubMed  Google Scholar 

  21. Huo M, Zhang Y, Zhou J, Zou A, Wu Y, Li J, Li H (2010) Int J Pharm 394:162–173

    Article  CAS  PubMed  Google Scholar 

  22. Prabaharan M, Reis RL, Mano JF (2007) React Funct Polym 67:43–52

    Article  CAS  Google Scholar 

  23. Zou L, Peng S, Liu W, Chen X, Liu C (2015) Food Res Int 69:114–120

    Article  CAS  Google Scholar 

  24. Li W, Peng H, Ning F, Yao L, Luo M, Zhao Q, Zhu X, Xiong H (2014) Food Chem 152:307–315

    Article  CAS  PubMed  Google Scholar 

  25. Magnificus R (2008) Peroral insulin delivery : new concepts and excipients. Dissertation, University of Geneva, Switzerland

  26. Balan V, Dodi G, Tudorachi N, Ponta O, Simon V, Butnaru M, Verestiuc L (2015) Chem Eng J 279:188–197

    Article  CAS  Google Scholar 

  27. Liu Y, Sun Y, He S, Zhu Y, Ao M, Li J, Cao Y (2013) Int J Biol Macromol 57:213–217

    Article  CAS  PubMed  Google Scholar 

  28. Mishra SK, Kannan S (2014) J Mech Behav Biomed Mater 40:314–324

    Article  CAS  PubMed  Google Scholar 

  29. Bigucci F, Abruzzo A, Saladini BGallucci MC, Cerchiara T, Luppi B (2015) Carbohydr Polym 130:32–40

    Article  CAS  PubMed  Google Scholar 

  30. Zhang C, Ping Q, Zhang H, Shen J (2003) Carbohydr Polym 54:137–141

    Article  CAS  Google Scholar 

  31. Silva MDS, Cocenza DS, Grillo R, de Melo NFS, Torello PS, de Oliveira LC, Cassimiro DL, Rosa AH, Fraceto LF (2011) J Hazard Mater 190:366–374

  32. Fei X, Yu M, Zhang B et al (2016) Spectrochim Acta Mol Biomol Spectrosc 152:343–351

    Article  CAS  Google Scholar 

  33. Rutnakornpituk M, Ngamdee P, Phinyocheep P (2005) Polymer 46:9742–9752

    Article  CAS  Google Scholar 

  34. Pang HT, Chen XG, Park HJ, Cha DS, Kennedy JF (2007) Carbohydr Polym 69:419–425

    Article  CAS  Google Scholar 

  35. Li Y-Y, Chen X-G, Yu L-M, Wang S-Y, Sun G-Z, Zhou H-Y (2006) J Appl Polym Sci 102:1968–1973

    Article  CAS  Google Scholar 

  36. Mourya V, Inamdar NN, Tiwari A (2010) Adv. Mater Lett 1:11–33

    Article  CAS  Google Scholar 

  37. Yan M, Li B, Zhao X (2010) Food Chem 122:1333–1337

    Article  CAS  Google Scholar 

  38. Po M, Saka M (2015) Biochim Biophys Acta 1850:1345–1353

    Article  CAS  Google Scholar 

  39. Aguiar J, Carpena P (2003) Molina-Bolı́var JA, Carnero Ruiz C. J Colloid Interface Sci 258:116–122

    Article  CAS  Google Scholar 

  40. Gao F, Li L, Zhang H, Yang W, Chen H, Zhou J, Zhou Z, Zhou Z, Wang Y, Cai Y, Li Y, Li L, Qiqing Z (2010) Int J Pharm 392:254–260

    Article  CAS  PubMed  Google Scholar 

  41. Siepmann J, Peppas NA (2001) Adv Drug Deliv Rev 48:139–157

    Article  CAS  PubMed  Google Scholar 

  42. Ritger PL, Peppas NA (1987) J Control Release 5:37–42

    Article  CAS  Google Scholar 

  43. Peppas NA, Sahlin JJ (1989) Int J Pharm 57:169–172

    Article  CAS  Google Scholar 

  44. Gierszewska-Druzyńska M, Ostrowska-Czubenko J (2012) Prog Chem Appl 2012:59–66

Download references

Acknowledgements

The authors are grateful to Ministry of Education Malaysia (FRGS 2014-0105-101-02) and Islamic Educational, Scientific and Cultural Organization (ISESCO) for providing research fund. MyBrain15 (MyMaster) Scholarship Award from Ministry of Education Malaysia to N.F.A. Aljafree is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kamari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aljafree, N.F.A., Kamari, A. Synthesis, characterisation and potential application of deoxycholic acid carboxymethyl chitosan as a carrier agent for rotenone. J Polym Res 25, 133 (2018). https://doi.org/10.1007/s10965-018-1530-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1530-6

Keywords

Navigation