Skip to main content
Log in

Unique behavior of in-situ generated nanosilica particles on physico-mechanical properties of fluoroelastomer

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Fluoroelastomer (FKM) rubber containing different weight percentage of in-situ generated nanosilica particles have been prepared by sol-gel method using tetraethoxysilane (TEOS) as precursor and n-butyl amine as catalyst. FKM rubber with precipitated silica particles have also been prepared to compare the effect of in-situ generated nanosilica particles and precipitated silica particles on the physico-mechanical properties of FKM rubber. It is interesting to note that the FKM rubber containing in-situ generated nanosilica particles display excellent tensile stress-strain properties, rheological properties and thermal properties in comparison to the FKM rubber containing precipitated silica particles. The better performance of the in-situ generated nanosilica particles has been attributed to the good dispersion of in-situ generated nanosilica particles in FKM rubber matrix when compared to the precipitated silica particles. The fourier transform infrared (FTIR) spectroscopy clearly confirms the existence of chemical interaction between the FKM rubber chains and the in-situ generated nanosilica particles which leads to the good dispersion of the nanosilica particles in the rubber matrix. Strain sweep studies confirm the presence of more rubber-filler interaction in FKM rubber filled with in-situ generated nanosilica particles. On the other hand, strain sweep studies confirm the presence of more filler-filler aggregation in FKM rubber filled with precipitated silica particles. The dispersion of the in-situ generated nanosilica particles and precipitated silica particles in the surface and bulk of FKM rubber has been studied by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Selected samples have been cured to understand the effect of curing on the efficiency of in-situ generated nanosilica particles and precipitated silica particles on the physico-mechanical properties of FKM rubber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cheremisinoff NP (1989) Handbook of polymer science and technology. Marcel Dekker, New York

    Google Scholar 

  2. Sonbati AZE (2012) Thermoplastic elastomers. InTech Chapters, Rijeka

    Book  Google Scholar 

  3. Messori M (2011) In situ synthesis of rubber nanocomposites: recent advance in elastomeric nanocomposites. Springer, Berlin

    Book  Google Scholar 

  4. Treloar LRG (1975) The physics of rubber elasticity. Clarendon press. Oxford, London

    Google Scholar 

  5. Choi SS (2001) Improvement of properties of silica-filled styrene–butadiene rubber compounds using acrylonitrile–butadiene rubber. J Appl Polym Sci 79:1127–1133

    Article  CAS  Google Scholar 

  6. Okada A, Usuki A (1995) The chemistry of polymer-clay hybrids. Mater Sci Eng C 3:109–115

    Article  Google Scholar 

  7. Zanetti M, Lomakin S, Camino G (2000) Polymer layered silicate nanocomposites. Macromol Mater Eng 279:1–9

    Article  CAS  Google Scholar 

  8. Godovoski DY (1995) Electron behavior and magnetic properties of polymer nanocomposites: advances in polymer science. Springer, Berlin Heidelberg

    Book  Google Scholar 

  9. Lim MH, Blanford CF, Stein A (1998) Synthesis of ordered microporous silicates with organo-sulfur surface groups and their applications as solid acid catalysts. Chem Mater 10:467–470

    Article  CAS  Google Scholar 

  10. Melero JA, Stucky GD, Grieken RV, Morales G (2002) Direct syntheses of ordered SBA-15 mesoporous materials containing arene sulfonic acid groups. J Mater Chem 12:1664–1670

    Article  CAS  Google Scholar 

  11. Chung KH (2008) Effect of silica reinforcement on natural rubber and butadiene rubber vulcanizates by a sol–gel reaction with tetraethoxysilane. J Appl Polym Sci 108:3952–3959

    Article  CAS  Google Scholar 

  12. Vladimirov V, Betchev C, Vassiliou A, Papageorgiou G, Bikiaris D (2006) Dynamic mechanical and morphological studies of isotactic polypropylene/fumed silica nanocomposites with enhanced gas barrier properties. Compos Sci Technol 66:2935–2944

    Article  CAS  Google Scholar 

  13. Murakami K, Iio S, Ikeda Y, Ito H, Tosaka M, Kohjiya S (2003) Effect of silane-coupling agent on natural rubber filled with silica generated in situ. J Mater Sci 38:1447–1455

    Article  CAS  Google Scholar 

  14. Arrighi V, McEwen IJ, Qian H, Prieto MBS (2003) The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofillers. Polymer 44:6259–6266

    Article  CAS  Google Scholar 

  15. Kohjiya S, Ikeda Y (2003) In situ formation of particulate silica in natural rubber matrix by the sol-gel reaction. J Sol-Gel Sci Technol 26:495–498

    Article  CAS  Google Scholar 

  16. Yoshikai K, Ohsaki T, Furukawa M (2002) Silica reinforcement of synthetic diene rubbers by sol–gel process in the latex. J Appl Polym Sci 85:2053–2063

    Article  CAS  Google Scholar 

  17. Wei Y, Yang DC, Bakthavatchalam R (1992) Thermal stability and hardness of new polyacrylate-SiO2 hybrid sol-gel materials. Mater Lett 13:261–266

    Article  CAS  Google Scholar 

  18. Kohjiya S, Ikeda Y (2000) Reinforcement of general-purpose grade rubbers by silica generated in situ. Rubber Chem Technol 73:534–550

    Article  CAS  Google Scholar 

  19. Kohjiya S, Murakami K, Iio S, Tanahashi T, Ikeda Y (2001) In situ filling of silica onto “green” natural rubber by the sol-gel process. Rubber Chem Technol 74:16–27

    Article  CAS  Google Scholar 

  20. Ikeda Y, Kameda Y (2004) Preparation of “green” composites by the sol-gel process: in situ silica filled natural rubber. J Sol-Gel Sci Technol 31:137–142

    Article  CAS  Google Scholar 

  21. Das A, Jurk R, Stockelhuber KW, Heinrich G (2008) Silica-ethylene propylene diene monomer rubber networking by in situ sol-gel method. J Macromol Sci Part A-Pure Appl Chem 45:101–106

    Article  Google Scholar 

  22. Breiner JM, Mark JE, Beaucage G (1999) Dependence of silica particle sizes on network chain lengths, silica contents, and catalyst concentrations in in situ-reinforced polysiloxane elastomers. J Polym Sci B Polym Phys 37:1421–1427

    Article  CAS  Google Scholar 

  23. Gvishi R (2009) Fast sol–gel technology: from fabrication to applications. J Sol-Gel Sci Technol 50:241–253

    Article  CAS  Google Scholar 

  24. Dong-na Z, Kai-chang K, Pan G, Mei H, Min C (2012) Preparation and characterization of PTFE-g-GMA modified PTFE/SiO2 organic–inorganic hybrids. J Polym Res 19:9873–9883

    Article  Google Scholar 

  25. Jiao J, Liu P, Wang L, Cai Y (2013) One-step synthesis of improved silica/epoxy nanocomposites with inorganic-organic hybrid network. J Polym Res 20:202–210

    Article  Google Scholar 

  26. Yang L, Xu Y, Qiu S, Zhang Y (2012) Polyacrylate/SiO2 nanocomposites prepared by combining non-aqueous sol–gel process and miniemulsion polymerization. J Polym Res 19:30–36

    Article  Google Scholar 

  27. Otitoju TA, Ahmad AL, Ooi BS (2017) Polyethersulfone composite hollow-fiber membrane prepared by in-situ growth of silica with highly improved oily wastewater separation performance. J Polym Res 24:123–132

    Article  Google Scholar 

  28. Lin J, Liu Y, Yang W, Xie Z, Zhang P, Li X, Lin H, Chen G, Lei Q (2012) Structure and mechanical properties of the hybrid films of well dispersed SiO2 nanoparticle in polyimide (PI/SiO2) prepared by sol–gel process. J Polym Res 19:30–36

    Article  CAS  Google Scholar 

  29. Ikeda Y, Tanaka A, Kohjiya S (1997) Reinforcement of styrene–butadiene rubber vulcanizate by in-situ silica prepared by the sol–gel reaction of tetraethoxysilane. J Mater Chem 7:1497–1503

    Article  CAS  Google Scholar 

  30. Bokobza L, Chauvin JP (2005) Reinforcement of natural rubber: use of in situ generated silicas and nanofibres of sepiolite. Polymer 46:4144–4151

    Article  CAS  Google Scholar 

  31. Zhou D, Subramaniam S, Mark JE (2005) In-situ synthesis of polyaniline in poly(dimethylsiloxane) networks using an inverse emulsion route. J Macromol Sci Part A-Pure Appl Chem 42:113–126

    Article  Google Scholar 

  32. Bandyopadhyay A, Bhowmick AK, De Sarkar M (2004) Synthesis and characterization of acrylic rubber/silica hybrid composites prepared by sol-gel technique. J Appl Polym Sci 93:2579–2589

    Article  CAS  Google Scholar 

  33. Yan H, Sun K, Zhang Y, Zhang Y (2005) Effect of nitrile rubber on properties of silica-filled natural rubber compounds. Polym Test 24:32–38

    Article  Google Scholar 

  34. Kohjiya S, Kato A, Ikeda Y (2008) Visualization of nanostructure of soft matter by 3D-TEM: nanoparticles in a natural rubber matrix. Prog Polym Sci 33:979–997

    Article  CAS  Google Scholar 

  35. Ikeda Y, Poompradub S, Morita Y, Kohjiya S (2008) Preparation of high performance nanocomposite elastomer: effect of reaction conditions on in situ silica generation of high content in natural rubber. J Sol-Gel Sci Technol 45:299–306

    Article  CAS  Google Scholar 

  36. Chaichua B, Prasassarakich P, Poompradub S (2009) In situ silica reinforcement of natural rubber by sol–gel process via rubber solution. J Sol-Gel Sci Technol 52:219–227

    Article  CAS  Google Scholar 

  37. Bandyopadhyay A, De Sarkar M, Bhowmick AK (2005) Epoxidised natural rubber/silica hybrid nanocomposites by sol-gel technique: effect of reactants on the structure and the properties. J. Mater Sci 40:53–62

    Article  CAS  Google Scholar 

  38. Kapgate BP, Das C, Basu D, Das A, Heinrich G, Reuter U (2014) Effect of silane integrated sol–gel derived in situ silica on the properties of nitrile rubber. J Appl Polym Sci 131:1–9

    Article  Google Scholar 

  39. Sengupta R, Bandyopadhyay A, Sabharwal S, Chaki TK, Bhowmick AK (2005) Polyamide-6, 6/in situ silica hybrid nanocomposites by sol–gel technique: synthesis, characterization and properties. Polymer 46:3343–3354

    Article  CAS  Google Scholar 

  40. Kapgate BP, Das C (2014) Reinforcing efficiency and compatibilizing effect of sol–gel derived in situ silica for natural rubber/chloroprene rubber blends. RSC Adv 4:58816–58825

    Article  CAS  Google Scholar 

  41. Bansod ND, Kapgate BP, Das C, Basu D, Debnath SC, Roy K, Weissner S (2015) Controlled growth of in situ silica in a NR/CR blend by a solution sol–gel method and the studies of its composite properties. RSC Adv 5:53559–53568

    Article  CAS  Google Scholar 

  42. Maiti M, Bhowmick AK (2006) Structure and properties of some novel fluoroelastomer/clay nanocomposites with special reference to their interaction. J Polym Sci B Polym Phys 44:162–176

    Article  CAS  Google Scholar 

  43. Lakshminarayanan S, Gelves GA, Sundararaj U (2012) Vulcanization behavior and mechanical properties of organoclay fluoroelastomer nanocomposites. J Appl Polym Sci 124:5056–5063

    CAS  Google Scholar 

  44. Sunada K, Takenaka K, Shiomi T (2005) Synthesis of polychloroprene–silica composites by sol-gel method in the presence of modified polychloroprene containing triethoxysilyl group. J Appl Polym Sci 97:1545–1552

    Article  CAS  Google Scholar 

  45. Poompradub S, Thirakulrati M, Prasassarakich P (2014) In situ generated silica in natural rubber latex via the sol–gel technique and properties of the silica rubber composites. Mater Chem Phys 144:122–131

    Article  CAS  Google Scholar 

  46. Ongwongsakul K, Rempel GL, Poompradub S, Hinchiranan N (2017) Comparative behavior of in situ silica generation in saturated rubbers: EPDM and hydrogenated natural rubber. J Appl Polym Sci 134:44748–44761

    Article  Google Scholar 

  47. Cassagnau P, Melis F (2003) Non-linear viscoelastic behaviour and modulus recovery in silica filled polymers. Polymer 44:6607–6615

    Article  CAS  Google Scholar 

  48. Wolthers W, Ende D, Breedveld V, Duits MHG, Potanin A, Wientjes RHW, Mellema J (1997) Linear viscoelastic behavior of aggregated colloidal dispersions. Phys Rev E 56:5726–5733

    Article  CAS  Google Scholar 

  49. Donato RK, Donato KZ, Schrekker HS, Matejka L (2012) Tunable reinforcement of epoxy-silica nanocomposites with ionic liquids. J Mater Chem 22:9939–9948

    Article  CAS  Google Scholar 

  50. Roy N, Bhowmick AK (2010) Novel in situ polydimethyl siloxane-sepiolite nanocomposites: structure-property relationship. Polymer 51:5172–5185

    Article  CAS  Google Scholar 

  51. Kalfoglou NK (1986) Effect of fillers on the compatibility of polymer blends. J Appl Polym Sci 32:5247–5259

    Article  CAS  Google Scholar 

  52. Medalia AI (1978) Effect of carbon black on dynamic properties of rubber vulcanizates. Rubber Chem Technol 51:437–523

    Article  CAS  Google Scholar 

  53. Boluk MY, Schereiber HP (1986) Interfacial interactions and the properties of filled polymers: I. dynamic-mechanical responses. Polym Compos 7:295–301

    Article  CAS  Google Scholar 

  54. Ashida M, Noguchi T, Mashimo S (1985) Effect of matrix's type on the dynamic properties for short fiber-elastomer composite. J Appl Polym Sci 30:1011–1021

    Article  CAS  Google Scholar 

  55. Kumar KD, Tsou AH, Bhowmick AK (2010) Unique tackification behavior of needle-like sepiolite nanoclay in brominated isobutylene-co-p-methylstyrene (BIMS) rubber. Macromolecules 43:4184–4193

    Article  CAS  Google Scholar 

  56. Kumar KD, Bhowmick AK, Tsou AH (2008) Influence of aging on autohesive tack of brominated isobutylene-co-p-methylstyrene (BIMS) rubber in the presence of phenolic resin tackifier. J Adhes 84:764–787

    Article  CAS  Google Scholar 

  57. Kumar KD, Gupta S, Sharma BB, Tsou AH, Bhowmick AK (2008) Probing the viscoelastic properties of brominated isobutylene-co-p-methylstyrene rubber/tackifier blends using a rubber process analyzer. Polym Eng Sci 48:2400–2409

    Article  CAS  Google Scholar 

  58. Luginsland H, Frohlich J, Wehmeier A (2002) Influence of different silanes on the reinforcement of silica-filled rubber compounds. Rubber Chem Technol 75:563–579

    Article  CAS  Google Scholar 

  59. Palza H, Vergara R, Zapata P (2010) Improving the thermal behavior of poly (propylene) by addition of spherical silica nanoparticles. Macromol Mater Eng 295:899–905

    Article  CAS  Google Scholar 

  60. Sittiphan T, Prasassarakich P, Poompradub S (2014) Styrene grafted natural rubber reinforced by in situ silica generated via sol–gel technique. Mater Sci Eng B 181:39–45

    Article  CAS  Google Scholar 

  61. Maiti M, Mitra S, Bhowmick AK (2008) Effect of nanoclays on high and low temperature degradation of fluoroelastomers. Polym Degrad Stab 93:188–200

    Article  CAS  Google Scholar 

  62. Messori M, Bignotti F, De Santis R, Taurino R (2009) Modification of isoprene rubber by in situ silica generation. Polym Int 58:880–887

    Article  CAS  Google Scholar 

  63. Morselli D, Bondioli F, Luyt AS, Mokhothu TH, Messori M (2013) Preparation and characterization of EPDM rubber modified with in situ generated silica. J Appl Polym Sci 128:2525–2532

    Article  Google Scholar 

  64. Kapgate BP, Das C, Das A, Basu D, Reuter U, Heinrich G (2012) Effect of sol–gel derived in situ silica on the morphology and mechanical behavior of natural rubber and acrylonitrile butadiene rubber blends. J Sol-Gel Sci Techol 63:501–509

    Article  CAS  Google Scholar 

  65. Rubio F, Rubio J, Oteo JL (1998) A FT-IR study of the hydrolysis of tetraethylorthosilicate (TEOS). Spectrosc Lett 31:199–219

    Article  CAS  Google Scholar 

  66. Beganskienė A, Sirutkaitis V, Kurtinaitienė M, Juškėnas R, Kareiva A (2004) FTIR, TEM and NMR investigations of Stöber silica nanoparticles. Mat Sci (Medžiagotyra) 10:287–290

    Google Scholar 

  67. Mitra S, Ghanbari-Siahkali A, Kingshott P, Almdal K, Rehmeier HK, Christensen AG (2004) Chemical degradation of fluoroelastomer in an alkaline environment. Polym Degrad Stab 83:195–206

    Article  CAS  Google Scholar 

  68. Scotti R, Wahba L, Crippa M, D’Arienzo M, Donetti R, Santo N, Morazzoni F (2012) Rubber–silica nanocomposites obtained by in situ sol–gel method: particle shape influence on the filler–filler and filler–rubber interactions. Soft Matter 8:2131–2143

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.S.S., P.R.S. and K.D.K. are indebted to Indian Institute of Technology Patna for providing necessary facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Dinesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satyanarayana, M.S., Sreenath, P.R., Basavaraja, S. et al. Unique behavior of in-situ generated nanosilica particles on physico-mechanical properties of fluoroelastomer. J Polym Res 25, 230 (2018). https://doi.org/10.1007/s10965-018-1629-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1629-9

Keywords

Navigation