Skip to main content
Log in

Light shear thickening fluid (STF)/Kevlar composites with improved ballistic impact strength

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Shear thickening fluids (STFs) have been developed for various applications such as body armor, viscoelastic dampers, and sports equipment. In this paper, the preparation and rheological properties of an STF are discussed. STF/Kevlar composites were made using ethanol as the cosolvent. The physical properties of the composites were determined by ballistic penetration, drop-tower, and yarn pull-out tests. The ballistic penetration was tested at a projectile velocity of 180 m/s. The ballistic penetration tests showed that adding the STF could obviously increase the energy dissipation. In addition, the weight of the composites may be reduced by 37% while their ballistic resistance is maintained. The knife drop-tower tests showed that adding the STF may improve the energy absorption by 20%. The yarn pull-out test demonstrated that the maximum pull-out force of the STF/Kevlar composites is 3.17 times that of neat Kevlar. The enhancements in the physical properties were apparently associated with the addition of the STF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Lee YS, Wetzel ED, Wagner NJ (2003) The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid. J Mater Sci 38:2825–2833

    Article  CAS  Google Scholar 

  2. Decker MJ, Halbach CJ, Nam CH, Wagner NJ, Wetzel ED (2007) Stab resistance of shear thickening fluid (STF)-treated fabrics. Compos Sci Technol 67:565–578

    Article  CAS  Google Scholar 

  3. Maranzano BJ, Wagner NJ (2001) The effects of particle-size on reversible shear thickening of concentrated colloidal dispersions. J Chem Phys 114:10514–10527

    Article  CAS  Google Scholar 

  4. Lara-Ceniceros TE, Cadenas-Pliego G, Rivera-Vallejo CC, de León-Gómez RED, Coronado A, Jiménez-Regalado EJ (2014) Synthesis and characterization of thermo-insensitive, water-soluble associative polymers with good thickening properties at low and high temperatures. J Polym Res 21:511

    Article  Google Scholar 

  5. Advanced polymeric materials structure property relationships. edited by Shonaike GO and Advani SG. CRC Press, Boca Raton, Florida, USA 2003

  6. Brown E, Forman NA, Orellana CS, Zhang H, Maynor BW, Betts DE, DeSimone JM, Jaeger HM (2010) Generality of shear thickening in dense suspensions. Nat Mater 9:220–224

    Article  CAS  Google Scholar 

  7. Bender J, Wagner NJ (1996) Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. J Rheol 40:899–916

    Article  CAS  Google Scholar 

  8. Zielinska D, Delczyk-Olejniczak B, Wierzbicki L, Wilbik-Halgas B, Struszczyk MH, Leonowicz M (2014) Investigation of the effect of Para-aramid fabric impregnation with shear thickening fluid on quasi-static stab resistance. Text Res J 84:1569–1577

    Article  Google Scholar 

  9. Grineviciute D, Abraitiene A, Sankauskaite A, Tumeniene DM, Lenkauskaite L, Barauskas R (2014) Influence of chemical surface modification of woven fabrics on ballistic and stab protection of multilayer packets. MATER SCI-MEDZG 20:193–197

    Google Scholar 

  10. Baharvandi HR, Khaksari P, Kordani N, Alebouyeh M, Alizadeh M, Khojasteh J (2014) Analyzing the quasi-static puncture resistance performance of shear thickening fluid enhanced P-aramid composite. Fibers Polym 15:2193–2200

    Article  CAS  Google Scholar 

  11. Baharvandi HR, Khaksari P, Alebouyeh M, Alizadeh M, Khojasteh J, Kordani N (2014) Investigating the quasi-static puncture resistance of p-aramid nanocomposite impregnated with the shear thickening fluid. J Reinf Plast Compos 33:2064–2072

    Article  Google Scholar 

  12. Afeshejani SHA, Sabet SAR, Zeynali ME, Atai M (2014) Energy absorption in a shear-thickening fluid. J Mater Eng Perform 23:4289–4297

    Article  CAS  Google Scholar 

  13. Fahool M, Sabet AR (2016) Parametric study of energy absorption mechanism in Twaron fabric impregnated with a shear thickening fluid. Int J Impact Eng 90:61–71

    Article  Google Scholar 

  14. Sun L-L, Xiong D-S, Xu C-Y (2013) Application of shear thickening fluid in ultrahigh molecular weight polyethylene fabric. J Appl Polym 129:1922–1928

    Article  CAS  Google Scholar 

  15. Gu J, Huang X-C, Li Y, Wang X-L, Shi M-W, Zheng Z (2014) Improving the stab-resistance performance of ultrahigh molecular weight polyethylene fabric intercalated with nano-silica-fluid. J Shanghai Jiaotung U (Sci) 19:102–109

    Article  Google Scholar 

  16. Mahfuz H, Clements F, Rangari V, Dhanak V, Beamson G (2009) Enhanced stab resistance of armor composites with functionalized silica nanoparticles. J Appl Phys 105:064307

    Article  Google Scholar 

  17. Hassan TA, Rangari VK, Jeelani S (2010) Synthesis, processing and characterization of shear thickening fluid (STF) impregnated fabric composites. Mater Sci Eng A 527:2892–2899

    Article  Google Scholar 

  18. Hassan TA, Rangari VK, Jeelani S (2010) Sonochemical synthesis and rheological properties of shear thickening silica dispersions. Ultrason Sonochem 17:947–952

    Article  CAS  Google Scholar 

  19. Kang TJ, Kim CY, Hong KH (2012) Rheological behavior of concentrated silica suspension and its application to soft armor. J Appl Polym Sci 124:1534–1541

    Article  CAS  Google Scholar 

  20. Tan VBC, Tay TE, Teo WK (2005) Strengthening fabric Armour with silica colloidal suspensions. Int J Solids Struct 42:1561–1576

    Article  Google Scholar 

  21. Lu Z, Jing X, Sun B, Gu B (2013) Compressive behaviors of warp-knitted spacer fabrics impregnated with shear thickening fluid. Compos Sci Technol 88:184–189

    Article  CAS  Google Scholar 

  22. Neagu RC, Bourban PE, Månson JAE (2009) Micromechanics and damping properties of composites integrating shear thickening fluids. Compos Sci Technol 69:515–522

    Article  CAS  Google Scholar 

  23. Fischer C, Bennani A, Michaud V, Jacquelin E, J-AE M (2010) Structural damping of model sandwich structures using tailored shear thickening fluid compositions. Smart Mater Struct 19:035017

    Article  Google Scholar 

  24. Li S, Wang Y, Ding J, Wu HM, Fu YQ (2014) Effect of shear thickening fluid on the sound insulation properties of textiles. Text Res J 84:897–902

    Article  CAS  Google Scholar 

  25. Hasanzadeh M, Mottaghitalab V (2014) The role of shear-thickening fluids (STFs) in ballistic and stab-resistance improvement of flexible armor. J Mater Eng Perform 23:1182–1196

    Article  CAS  Google Scholar 

  26. Srivastava A, Majumdar A, Butola BS (2012) Improving the impact resistance of textile structures by using shear thickening fluids: a review. Crit Rev Solid State Mater Sci 37:115–129

    Article  CAS  Google Scholar 

  27. Maranzano BJ, Wagner NJ (2001) The effects of interparticle interactions and particle size on reversible shear thickening: hard-sphere colloidal dispersions. J Rheol 45:1205–1222

    Article  CAS  Google Scholar 

  28. NIJ Standard-0101.06 ballistic resistance of body armor. 2006

  29. Park Y, Kim Y, Baluch AH, Kim CG (2014) Empirical study of the high velocity impact energy absorption characteristics of shear thickening fluid (STF) impregnated Kevlar fabric. Int J Impact Eng 72:67–74

    Article  Google Scholar 

  30. Rabb RJ, Fahrenthold EP (2011) Evaluation of shear-thickening-fluid Kevlar for large-fragment-containment applications. J Aircraft 48:230–234

    Article  Google Scholar 

  31. Kirkwood JE, Kirkwood KA, Lee YS, Egres RG, Wagner NJ, Wetzel ED (2004) Yarn pull-out as a mechanism for dissipating ballistic impact energy in Kevlar® KM-2 fabric - part II: predicting ballistic performance. Text Res J 74:939–948

    Article  CAS  Google Scholar 

  32. Kirkwood KM, Kirkwood JE, Lee YS, Egres RG, Wagner NJ, Wetzel ED (2004) Yarn pull-out as a mechanism for dissipating ballistic impact energy in Kevlar® KM-2 fabric - Part I: Quasi-static characterization of yarn pull-out. Text Res J 74:920–928

    Article  CAS  Google Scholar 

  33. Dong Z, Sun CT (2009) Testing and modeling of yarn pull-out in plain woven Kevlar fabrics. Composites Part A 40:1863–1869

    Article  Google Scholar 

  34. Dong Z, Manimala JM, Sun CT (2010) Mechanical behavior of silica nanoparticle-impregnated Kevlar fabrics. J Mech Mater Struct 5:529–548

    Article  Google Scholar 

  35. Lee BW, Kim IJ, Kim CG (2009) The influence of the particle size of silica on the ballistic performance of fabrics impregnated with silica colloidal suspension. J Compos Mater 43:2679–2698

    Article  CAS  Google Scholar 

  36. Gong X, Xu Y, Zhu W, Xuan S, Jiang W, Jiang W (2014) Study of the knife stab and puncture-resistant performance for shear thickening fluid enhanced fabric. J Compos Mater 48:641–657

    Article  Google Scholar 

  37. Duan Y, Keefe M, Bogetti TA, Cheeseman BA (2005) Modeling friction effects on the ballistic impact behavior of a single-ply high-strength fabric. Int J Impact Eng 31:996–1012

    Article  Google Scholar 

  38. NIJ Standard-0115.00 stab resistance of personal body armor. 2000

  39. Maranzano BJ. Rheology and microstructure of concentrated near hard sphere colloidal dispersions at the shear thickening transition. Ph.D. Dissertation, Department of Chemical Engineering, University of Delaware, 2001

  40. Wetzel ED, Lee YS, Egres RG, Kirkwood KM, Kirkwood JE, Wagner NJ (2004) The effect of rheological parameters on the ballistic properties of shear thickening fluid (STF)-Kevlar composites. AIP Conf Proc 712:288–293

    Article  CAS  Google Scholar 

  41. Mayo Jr JB, Wetzel ED, Hosur MV, Jeelani S (2009) Stab and puncture characterization of thermoplastic-impregnated aramid fabrics. Int J Impact Eng 36:1095–1105

    Article  Google Scholar 

  42. Mayo JB, Wetzel ED (2014) Cut resistance and failure of high-performance single fibers. Text Res J 84:1233–1246

    Article  CAS  Google Scholar 

  43. Gürgen S, Kuşhan MC, Li W (2017) Shear thickening fluids in protective applications: a review. Prog Polym Sci 75:48–72

    Article  Google Scholar 

  44. Fowler JN, Zetune K, and Wagner, NJ Impact-Resistant Pad and Method of Manufacturing. US 20140223649 A1

Download references

Acknowledgments

This work was funded by contract numbers NSC-101-2623-E-027-003-D and NSC-102-2623-E-027-002-D from the Ministry of Science and Technology, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Kai Yeh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, SK., Lin, JJ., Zhuang, HY. et al. Light shear thickening fluid (STF)/Kevlar composites with improved ballistic impact strength. J Polym Res 26, 155 (2019). https://doi.org/10.1007/s10965-019-1811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1811-8

Keywords

Navigation