Skip to main content
Log in

Investigation of long-term ageing effect on the thermal properties of chicken feather fibre/poly(lactic acid) biocomposites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, the effects of long-term natural atmospheric ageing on the thermal properties of chicken feather fibre reinforced poly(lactic acid) biocomposite materials having chicken feather fibre mass content of 2, 5, and 10% were investigated. Chicken feather fibres, which are bio-based reinforcement material, and poly(lactic acid), which is bio-based matrix material, are compounded with a twin-screw extruder and injection-moulded; hence, the biocomposite material is produced. The effect of long-term natural atmospheric ageing on the thermal stability, crystallization, and melting behaviour of the biocomposite materials were analysed by thermogravimetric, derivative thermogravimetry, differential thermal, and differential scanning calorimetry analyses. In addition, the fracture surface of the samples was examined in depth by scanning electron microscopy analysis. The experimental results show that the long-term natural ageing process decreases the thermal stability values of the biocomposite materials and increases the glass transition temperatures and degree of crystallinities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hassan MM, Koyama K (2020) Thermomechanical and viscoelastic properties of green composites of PLA using chitin micro-particles as fillers. J Polym Res 27. https://doi.org/10.1007/s10965-019-1991-2

  2. Thomas S, Kuruvilla J, Malhotra SK et al (2012) Polymer composites. Wiley-VCH

  3. Varley D, Yousaf S, Youseffi M, Mozafari M (2019) Fiber-reinforced composites. Adv dent biomater 301–315. https://doi.org/10.1016/B978-0-08-102476-8.00013-X

  4. Keck S, Fulland M (2016) Effect of fibre volume fraction and fibre direction on crack paths in flax fibre-reinforced composites. Eng Fract Mech 167:201–209. https://doi.org/10.1016/j.engfracmech.2016.03.037

    Article  Google Scholar 

  5. Peças P, Carvalho H, Salman H, Leite M (2018) Natural fibre composites and their applications: a review. J Compos Sci 2:66. https://doi.org/10.3390/jcs2040066

    Article  CAS  Google Scholar 

  6. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials (Basel) 2:307–344

    Article  CAS  Google Scholar 

  7. Shimao M (2001) Biodegradation of plastics. Curr Opin Biotechnol 12:242–247

    Article  CAS  Google Scholar 

  8. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265

    Article  CAS  Google Scholar 

  9. Murthy N, Wilson S, Sy JC (2012) Biodegradation of polymers. In: polymer science: a comprehensive reference, 10 volume set. Elsevier, pp 547–560

  10. Yin GZ, Yang XM (2020) Biodegradable polymers: a cure for the planet, but a long way to go. J Polym Res 27

  11. Papageorgiou GZ (2018) Thinking green: sustainable polymers from renewable resources. Polymers (Basel) 10

  12. Schneiderman DK, Hillmyer MA (2017) 50th anniversary perspective: there is a great future in sustainable polymers. Macromolecules 50:3733–3749. https://doi.org/10.1021/acs.macromol.7b00293

    Article  CAS  Google Scholar 

  13. Mitra BC (2014) Environment friendly composite materials: biocomposites and green composites. Def Sci J 64:244–261. https://doi.org/10.14429/dsj.64.7323

    Article  CAS  Google Scholar 

  14. Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. CRC Press

  15. Dicker MPM, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: a review of material attributes and complementary applications. Compos Part A Appl Sci Manuf 56:280–289

    Article  CAS  Google Scholar 

  16. Zhu Y, Romain C, Williams CK (2016) Sustainable polymers from renewable resources. Nature 540:354–362

    Article  CAS  Google Scholar 

  17. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  CAS  Google Scholar 

  18. Graupner N, Herrmann AS, Müssig J (2009) Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos Part A Appl Sci Manuf 40:810–821. https://doi.org/10.1016/j.compositesa.2009.04.003

    Article  CAS  Google Scholar 

  19. Inkinen S, Hakkarainen M, Albertsson A-C, Södergård A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12:523–532. https://doi.org/10.1021/bm101302t

    Article  CAS  PubMed  Google Scholar 

  20. Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32:455–482

    Article  CAS  Google Scholar 

  21. Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31:877–902

    Article  CAS  Google Scholar 

  22. Chafran LS, Campos JMC, Santos JS, Sales MJA, Dias SCL, Dias JA (2016) Synthesis of poly(lactic acid) by heterogeneous acid catalysis from d,l-lactic acid. J Polym Res 23:107. https://doi.org/10.1007/s10965-016-0976-7

    Article  CAS  Google Scholar 

  23. S SK, Hiremath SS (2019) Natural Fiber reinforced composites in the context of biodegradability: a review. In: Reference Module in Materials Science and Materials Engineering. Elsevier

  24. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000-2010. Prog Polym Sci 37:1552–1596

    Article  CAS  Google Scholar 

  25. Mukherjee T, Kao N (2011) PLA based biopolymer reinforced with natural fibre: a review. J Polym Environ 19:714–725. https://doi.org/10.1007/s10924-011-0320-6

    Article  CAS  Google Scholar 

  26. Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos Part A Appl Sci Manuf 41:499–505. https://doi.org/10.1016/j.compositesa.2009.12.006

    Article  CAS  Google Scholar 

  27. Graupner N, Müssig J (2011) A comparison of the mechanical characteristics of kenaf and lyocell fibre reinforced poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) composites. Compos Part A Appl Sci Manuf 42:2010–2019. https://doi.org/10.1016/j.compositesa.2011.09.007

    Article  CAS  Google Scholar 

  28. Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos Part A Appl Sci Manuf 40:404–412. https://doi.org/10.1016/j.compositesa.2009.01.002

    Article  CAS  Google Scholar 

  29. Shih YF, Huang CC (2011) Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. J Polym Res 18:2335–2340. https://doi.org/10.1007/s10965-011-9646-y

    Article  CAS  Google Scholar 

  30. Noorunnisa Khanam P, Abdul Khalil HPS, Ramachandra Reddy G, Venkata Naidu S (2011) Tensile, flexural and chemical resistance properties of sisal fibre reinforced polymer composites: effect of fibre surface treatment. J Polym Environ 19:115–119. https://doi.org/10.1007/s10924-010-0219-7

    Article  CAS  Google Scholar 

  31. Sutivisedsak N, Cheng HN, Dowd MK, Selling GW, Biswas A (2012) Evaluation of cotton byproducts as fillers for poly(lactic acid) and low density polyethylene. Ind Crop Prod 36:127–134. https://doi.org/10.1016/j.indcrop.2011.08.016

    Article  CAS  Google Scholar 

  32. Dauda BMD, Kolawole EG (2003) Processibility of Nigerian kapok fibre. Indian J Fibre Text Res 28:147–149

    CAS  Google Scholar 

  33. Fan Z, Hu J, Wang J (2012) Biological nitrate removal using wheat straw and PLA as substrate. Environ Technol (United Kingdom) 33:2369–2374. https://doi.org/10.1080/09593330.2012.669411

    Article  CAS  Google Scholar 

  34. Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos Part A Appl Sci Manuf 40:469–475. https://doi.org/10.1016/j.compositesa.2009.01.012

    Article  CAS  Google Scholar 

  35. Luo H, Xiong G, Ma C, Chang P, Yao F, Zhu Y, Zhang C, Wan Y (2014) Mechanical and thermo-mechanical behaviors of sizing-treated corn fiber/polylactide composites. Polym Test 39:45–52. https://doi.org/10.1016/j.polymertesting.2014.07.014

    Article  CAS  Google Scholar 

  36. Maringa M, Mutuli S, Kavishe F (2011) An investigation of the mechanical properties of sisal fibre. Loofah Matt and their Composites with Epoxy Resin J Agric Sci Technol 1. https://doi.org/10.4314/jagst.v1i1.31698

  37. Prusek J, Boruvka M, Lenfeld P (2018) Natural aerobic degradation of Polylactic acid (composites) with natural Fiber additives. Mater Sci Forum 919:167–174. https://doi.org/10.4028/www.scientific.net/msf.919.167

    Article  Google Scholar 

  38. Sun RC, Sun XF (2002) Structural and thermal characterization of acetylated rice, wheat, rye, and barley straws and poplar wood fibre. Ind Crop Prod 16:225–235. https://doi.org/10.1016/S0926-6690(02)00050-X

  39. Smitthipong W, Tantatherdtam R, Chollakup R (2015) Effect of pineapple leaf fiber-reinforced thermoplastic starch/poly(lactic acid) green composite: mechanical, viscosity, and water resistance properties. J Thermoplast Compos Mater 28:717–729. https://doi.org/10.1177/0892705713489701

    Article  CAS  Google Scholar 

  40. Li Y, Shen YO (2014) The use of sisal and henequen fibres as reinforcements in composites. Biofiber Reinforcements in Composite Materials. Elsevier Inc., In, pp 165–210

    Google Scholar 

  41. Nassiopoulos E, Njuguna J (2015) Thermo-mechanical performance of poly(lactic acid)/flax fibre-reinforced biocomposites. Mater Des 66:473–485. https://doi.org/10.1016/j.matdes.2014.07.051

    Article  CAS  Google Scholar 

  42. Song YS, Lee JT, Ji DS, Kim MW, Lee SH, Youn JR (2012) Viscoelastic and thermal behavior of woven hemp fiber reinforced poly(lactic acid) composites. Compos Part B Eng 43:856–860. https://doi.org/10.1016/j.compositesb.2011.10.021

    Article  CAS  Google Scholar 

  43. Anand P, Rajesh D, Senthil Kumar M, Saran Raj I (2018). Investigations on the performances of treated jute/Kenaf hybrid natural fiber reinforced epoxy composite J Polym Res:25. https://doi.org/10.1007/s10965-018-1494-6

  44. Dong Y, Ghataura A, Takagi H, Haroosh HJ, Nakagaito AN, Lau KT (2014) Polylactic acid (PLA) biocomposites reinforced with coir fibres: evaluation of mechanical performance and multifunctional properties. Compos Part A Appl Sci Manuf 63:76–84. https://doi.org/10.1016/j.compositesa.2014.04.003

    Article  CAS  Google Scholar 

  45. Mamun AA, Heim HP, Beg DH, Kim TS, Ahmad SH (2013) PLA and PP composites with enzyme modified oil palm fibre: a comparative study. Compos Part A Appl Sci Manuf 53:160–167. https://doi.org/10.1016/j.compositesa.2013.06.010

    Article  CAS  Google Scholar 

  46. Wu CS, Tsou CH (2019) Fabrication, characterization, and application of biocomposites from poly(lactic acid) with renewable rice husk as reinforcement. J Polym Res 26. https://doi.org/10.1007/s10965-019-1710-z

  47. Hidalgo-Cordero JF, García-Navarro J (2018) Totora (Schoenoplectus californicus (C.a. Mey.) Soják) and its potential as a construction material. Ind. Crops Prod 112:467–480

    Article  Google Scholar 

  48. Bard D, Yarwood J, Tylee B (1997) Asbestos fibre identification by Raman microspectroscopy. J Raman Spectrosc 28:803–809. 10.1002/(SICI)1097-4555(199710)28:10<803::AID-JRS151>3.0.CO;2-7

  49. Croce A, Arrais A, Rinaudo C (2018) Raman micro-spectroscopy identifies carbonaceous particles lying on the surface of Crocidolite, Amosite, and Chrysotile fibers. Minerals 8:249. https://doi.org/10.3390/min8060249

    Article  CAS  Google Scholar 

  50. Pollastri S, Perchiazzi N, Gigli L et al (2017) The crystal structure of mineral fibres. 2. Amosite and fibrous anthophyllite. Period di Mineral 86:55–65. https://doi.org/10.2451/2017PM693

    Article  Google Scholar 

  51. Pollastri S, Perchiazzi N, Lezzerini M et al (2016) The crystal structure of mineral fibres. 1. Chrysotile. Period di Mineral 85:249–259. https://doi.org/10.2451/2016PM655

    Article  Google Scholar 

  52. Bloise A, Kusiorowski R, Gualtieri A (2018) The effect of grinding on Tremolite Asbestos and Anthophyllite Asbestos. Minerals 8:274. https://doi.org/10.3390/min8070274

    Article  CAS  Google Scholar 

  53. Bolormaa B, Drean JY, Enkhtuya D (2007) A study of the diameter distribution and tensile property of horse tail hair. J Nat Fibers 4:1–11

    Article  CAS  Google Scholar 

  54. Verma A, Singh VK (2016) Human hair: a biodegradable composite Fiber–a review. Int J Waste Resour 6. https://doi.org/10.4172/2252-5211.1000206

  55. Dunmade I (2013) Mechanical properties of renewable materials : a study on alpaca fibre. Int J Enginnering Sci Invent 2:56–62

    Google Scholar 

  56. Bharath KN, Pasha M, Nizamuddin BA (2016) Characterization of natural fiber (sheep wool)-reinforced polymer-matrix composites at different operating conditions. J Ind Text 45:730–751. https://doi.org/10.1177/1528083714540698

    Article  CAS  Google Scholar 

  57. Molins G, Álvarez MD, Garrido N, Macanás J, Carrillo F (2018) Environmental impact assessment of Polylactide(PLA)/chicken feathers biocomposite materials. J Polym Environ 26:873–884. https://doi.org/10.1007/s10924-017-0982-9

    Article  CAS  Google Scholar 

  58. Srivatsav V, Ravishankar C, Ramakarishna M et al (2018) Mechanical and thermal properties of chicken feather reinforced epoxy composite. AIP Conference Proceedings. American Institute of Physics Inc., In

    Book  Google Scholar 

  59. Reddy N, Yang Y (2007) Structure and properties of chicken feather barbs as natural protein fibers. J Polym Environ 15:81–87. https://doi.org/10.1007/s10924-007-0054-7

    Article  CAS  Google Scholar 

  60. Bessa J, Souza J, Lopes JB et al (2017) Characterization of thermal and acoustic insulation of chicken feather reinforced composites. Procedia Engineering. Elsevier Ltd, In, pp 472–479

    Google Scholar 

  61. Zhan M, Wool RP, Xiao JQ (2011) Electrical properties of chicken feather fiber reinforced epoxy composites. Compos Part A Appl Sci Manuf 42:229–233. https://doi.org/10.1016/j.compositesa.2010.11.007

    Article  CAS  Google Scholar 

  62. Özmen U, Baba BO (2017) Thermal characterization of chicken feather/PLA biocomposites. J Therm Anal Calorim 129:347–355. https://doi.org/10.1007/s10973-017-6188-5

    Article  CAS  Google Scholar 

  63. Cheng S, Lau K tak, Liu T, et al (2009) Mechanical and thermal properties of chicken feather fiber/PLA green composites. Compos Part B Eng 40:650–654. https://doi.org/10.1016/j.compositesb.2009.04.011

  64. Malloum A, El Mahi A, Idriss M (2019) The effects of water ageing on the tensile static and fatigue behaviors of greenpoxy–flax fiber composites. J Compos Mater 53:2927–2939. https://doi.org/10.1177/0021998319835596

    Article  CAS  Google Scholar 

  65. Techawinyutham L, Siengchin S, Dangtungee R, Parameswaranpillai J (2019) Influence of accelerated weathering on the thermo-mechanical, antibacterial, and rheological properties of polylactic acid incorporated with porous silica-containing varying amount of capsicum oleoresin. Compos part B Eng 175. https://doi.org/10.1016/j.compositesb.2019.107108

  66. Isadounene S, Hammiche D, Boukerrou A, Rodrigue D, Djidjelli H (2018) Accelerated ageing of alkali treated olive husk flour reinforced polylactic acid (pla) biocomposites: Physico-mechanical properties. Polym Polym Compos 26:223–232. https://doi.org/10.1177/096739111802600302

    Article  Google Scholar 

  67. Lila MK, Shukla K, Komal UK, Singh I (2019) Accelerated thermal ageing behaviour of bagasse fibers reinforced poly (lactic acid) based biocomposites. Compos Part B Eng 156:121–127. https://doi.org/10.1016/j.compositesb.2018.08.068

    Article  CAS  Google Scholar 

  68. Gil-Castell O, Badia JD, Kittikorn T, Strömberg E, Ek M, Karlsson S, Ribes-Greus A (2016) Impact of hydrothermal ageing on the thermal stability, morphology and viscoelastic performance of PLA/sisal biocomposites. Polym Degrad Stab 132:87–96. https://doi.org/10.1016/j.polymdegradstab.2016.03.038

    Article  CAS  Google Scholar 

  69. Pickett JE, Coyle DJ (2013) Hydrolysis kinetics of condensation polymers under humidity aging conditions. Polym Degrad Stab 98:1311–1320. https://doi.org/10.1016/j.polymdegradstab.2013.04.001

    Article  CAS  Google Scholar 

  70. Yu L, Yan X, Fortin G (2018) Effects of weathering aging on mechanical and thermal properties of injection molded glass fiber reinforced polypropylene composites. J Polym Res 25:247. https://doi.org/10.1007/s10965-018-1642-z

    Article  CAS  Google Scholar 

  71. Kotsilkova R, Angelova P, Batakliev T et al (2019) Study on aging and recover of poly (lactic) acid composite films with graphene and carbon nanotubes produced by solution blending and extrusion. Coatings 9. https://doi.org/10.3390/coatings9060355

  72. Le Duigou A, Bourmaud A, Davies P, Baley C (2014) Long term immersion in natural seawater of flax/PLA biocomposite. Ocean Eng 90:140–148. https://doi.org/10.1016/j.oceaneng.2014.07.021

    Article  Google Scholar 

  73. Araújo MC, Martins JP, Mirkhalaf SM et al (2014) Predicting the mechanical behavior of amorphous polymeric materials under strain through multi-scale simulation. Applied Surface Science. Elsevier B.V, In, pp 37–46

    Google Scholar 

  74. Mirkhalaf SM, Fagerström M (2019) The mechanical behavior of polylactic acid (PLA) films: fabrication, experiments and modelling. Mech Time-Dependent Mater. https://doi.org/10.1007/s11043-019-09429-w

  75. Acioli-Moura R, Sun XS (2008) Thermal degradation and physical aging of poly(lactic acid) and its blends with starch. Polym Eng Sci 48:829–836. https://doi.org/10.1002/pen.21019

    Article  CAS  Google Scholar 

  76. Baba BO, Özmen U (2017) Preparation and mechanical characterization of chicken feather/PLA composites. Polym Compos 38:837–845. https://doi.org/10.1002/pc.23644

    Article  CAS  Google Scholar 

  77. Aranberri I, Montes S, Azcune I, Rekondo A, Grande HJ (2017) Fully biodegradable biocomposites with high chicken feather content. Polymers (Basel) 9. https://doi.org/10.3390/polym9110593

  78. Ohkita T, Lee SH (2006) Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites. J Appl Polym Sci 100:3009–3017. https://doi.org/10.1002/app.23425

    Article  CAS  Google Scholar 

  79. Naveen J, Jawaid M, Zainudin ES, Sultan MTH, Yahaya R, Abdul Majid MS (2019) Thermal degradation and viscoelastic properties of Kevlar/Cocos nucifera sheath reinforced epoxy hybrid composites. Compos Struct 219:194–202. https://doi.org/10.1016/j.compstruct.2019.03.079

    Article  Google Scholar 

  80. Gheith MH, Aziz MA, Ghori W, Saba N, Asim M, Jawaid M, Alothman OY (2019) Flexural, thermal and dynamic mechanical properties of date palm fibres reinforced epoxy composites. J Mater Res Technol 8:853–860. https://doi.org/10.1016/j.jmrt.2018.06.013

    Article  CAS  Google Scholar 

  81. Siakeng R, Jawaid M, Ariffin H, Salit MS (2018) Effects of surface treatments on tensile, thermal and fibre-matrix bond strength of coir and pineapple leaf Fibres with poly lactic acid. J Bionic Eng 15:1035–1046. https://doi.org/10.1007/s42235-018-0091-z

    Article  Google Scholar 

  82. Martínez-Hernández AL, Velasco-Santos C, De Icaza M, Castaño VM (2005) Microstructural characterisation of keratin fibres from chicken feathers. Int J Environ Pollut 23:162–178. https://doi.org/10.1504/ijep.2005.006858

    Article  Google Scholar 

  83. Asim M, Jawaid M, Nasir M, Saba N (2018) Effect of fiber loadings and treatment on dynamic mechanical, thermal and flammability properties of pineapple leaf fiber and kenaf phenolic composites. J Renew Mater 6:383–393. https://doi.org/10.7569/JRM.2017.634162

    Article  CAS  Google Scholar 

  84. T SMK, Yorseng K, N R, et al (2019) Mechanical and thermal properties of spent coffee bean filler/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites: effect of recycling. Process Saf Environ Prot 187–195. https://doi.org/10.1016/j.psep.2019.02.008, 124

  85. Anbukarasi K, Kalaiselvam S (2015) Study of effect of fibre volume and dimension on mechanical, thermal, and water absorption behaviour of luffa reinforced epoxy composites. Mater Des 66:321–330. https://doi.org/10.1016/j.matdes.2014.10.078

    Article  CAS  Google Scholar 

  86. Yang Y, Haurie L, Wen J, Zhang S, Ollivier A, Wang DY (2019) Effect of oxidized wood flour as functional filler on the mechanical, thermal and flame-retardant properties of polylactide biocomposites. Ind Crop Prod 130:301–309. https://doi.org/10.1016/j.indcrop.2018.12.090

    Article  CAS  Google Scholar 

  87. Fernandes EM, Correlo VM, Mano JF, Reis RL (2015) Cork-polymer biocomposites: mechanical, structural and thermal properties. Mater Des 82:282–289. https://doi.org/10.1016/j.matdes.2015.05.040

    Article  CAS  Google Scholar 

  88. Akderya T, Çevik M (2018) Investigation of thermal-oil environmental ageing effect on mechanical and thermal behaviours of E-glass fibre/epoxy composites. J Polym Res 25. https://doi.org/10.1007/s10965-018-1615-2

  89. Jia S, Yu D, Zhu Y et al (2017) Morphology, crystallization and thermal behaviors of PLA-based composites: wonderful effects of hybrid GO/PEG via dynamic impregnating. Polymers (Basel) 9. https://doi.org/10.3390/polym9100528

  90. De Rosa IM, Iannoni A, Kenny JM et al (2011) Poly(lactic acid)/Phormium tenax composites: morphology and thermo-mechanical behavior. Polym Compos 32:1362–1368. https://doi.org/10.1002/pc.21159

    Article  CAS  Google Scholar 

  91. Auras R, Lim LT, Selke SEM, Tsuji H (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. John Wiley and Sons

  92. Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251

    Article  CAS  Google Scholar 

  93. Jawaid M, Abdul Khalil HPS, Hassan A, Dungani R, Hadiyane A (2013) Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Compos Part B Eng 45:619–624. https://doi.org/10.1016/j.compositesb.2012.04.068

    Article  CAS  Google Scholar 

  94. Fouad H (2010) Effect of long-term natural aging on the thermal, mechanical, and viscoelastic behavior of biomedical grade of ultra high molecular weight polyethylene. J Appl Polym Sci 118:17–24. https://doi.org/10.1002/app.32290

    Article  CAS  Google Scholar 

  95. Şanlı S, Durmus A, Ercan N (2012) Effect of nucleating agent on the nonisothermal crystallization kinetics of glass fiber- and mineral-filled polyamide-6 composites. J Appl Polym Sci 125:E268–E281. https://doi.org/10.1002/app.36231

    Article  CAS  Google Scholar 

  96. Di Lorenzo ML, Sajkiewicz P, La Pietra P, Gradys A (2006) Irregularly shaped DSC exotherms in the analysis of polymer crystallization. Polym Bull 57:713–721. https://doi.org/10.1007/s00289-006-0621-4

    Article  CAS  Google Scholar 

  97. Askadskii A, Popova M, Matseevich T, Afanasyev E (2014) The influence of the degree of crystallinity on the elasticity modulus of polymers. Advanced Materials Research, In, pp 640–643

    Google Scholar 

  98. Gofman IV, Yudin VE, Orell O, Vuorinen J, Grigoriev AY, Svetlichnyi VM (2013) Influence of the degree of crystallinity on the mechanical and tribological properties of high-performance thermoplastics over a wide range of temperatures: from room temperature up to 250°C. J Macromol Sci Part B Phys 52:1848–1860. https://doi.org/10.1080/00222348.2013.808932

    Article  CAS  Google Scholar 

  99. Jiang N, Abe H (2015) Crystallization and mechanical behavior of covalent functionalized carbon nanotube/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. J Appl Polym Sci 132. https://doi.org/10.1002/app.42136

  100. Pan P, Zhu B, Kai W, Serizawa S, Iji M, Inoue Y (2007) Crystallization behavior and mechanical properties of bio-based green composites based on poly(L-lactide) and kenaf fiber. J Appl Polym Sci 105:1511–1520. https://doi.org/10.1002/app.26407

    Article  CAS  Google Scholar 

  101. Li X, Liu KL, Wang M, Wong SY, Tjiu WC, He CB, Goh SH, Li J (2009) Improving hydrophilicity, mechanical properties and biocompatibility of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] through blending with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide). Acta Biomater 5:2002–2012. https://doi.org/10.1016/j.actbio.2009.01.035

    Article  CAS  PubMed  Google Scholar 

  102. Cheung HY, Lau KT, Tao XM, Hui D (2008) A potential material for tissue engineering: silkworm silk/PLA biocomposite. Compos Part B Eng 39:1026–1033. https://doi.org/10.1016/j.compositesb.2007.11.009

    Article  CAS  Google Scholar 

  103. Pereira GC, Rzatki FD, Mazzaferro L, Forin DM, Barra GMO (2016) Mechanical and thermo-physical properties of short glass fiber reinforced polybutylene terephthalate upon aging in lubricant/refrigerant mixture. Mater Res 19:1310–1318. https://doi.org/10.1590/1980-5373-MR-2016-0339

    Article  CAS  Google Scholar 

  104. J. Shesan O, C. Stephen A, G. Chioma A, et al (2019) Fiber-Matrix Relationship for Composites Preparation. In: Composites from Renewable and Sustainable Materials [Working Title]. IntechOpen

  105. Wang L, He C, Fu J (2019) Physical, mechanical, and thermal behavior analyses of basalt fiber-reinforced composites. Int J Plast Technol 23:123–131. https://doi.org/10.1007/s12588-019-09244-5

    Article  CAS  Google Scholar 

  106. Lee JJ, Nam I, Kim H (2017) Thermal stability and physical properties of epoxy composite reinforced with silane treated basalt fiber. Fibers Polym 18:140–147. https://doi.org/10.1007/s12221-017-6752-4

    Article  CAS  Google Scholar 

  107. Chen ZC, Tamachi T, Kulkarni R, Chawla KK, Koopman M (2008) Interfacial reaction behavior and thermal stability of barium zirconate-coated alumina fiber/alumina matrix composites. J Eur Ceram Soc 28:1149–1160. https://doi.org/10.1016/j.jeurceramsoc.2007.09.048

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarkan Akderya.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akderya, T., Özmen, U. & Baba, B.O. Investigation of long-term ageing effect on the thermal properties of chicken feather fibre/poly(lactic acid) biocomposites. J Polym Res 27, 162 (2020). https://doi.org/10.1007/s10965-020-02132-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02132-2

Keywords

Navigation