Skip to main content
Log in

Enhanced CO2 capture in nitrogen-enriched microporous carbons derived from Polybenzoxazines containing azobenzene and carboxylic acid units

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, we prepared nitrogen-doped microporous carbons (NMCs) from two different benzoxazine monomers (AMBZ, AEBZ), each containing both azobenzene and carboxylic groups, through a simple and environmentally friendly process of ring-opening polymerization (ROP), calcination, and KOH activation. We synthesized the AMBZ and AEBZ monomers through Mannich condensations of 4,4′-diaminodiphenylmethane (M) and 4,4′-diaminodiphenyl ether (E), respectively, with paraformaldehyde and 4-(4-hydroxphenylazo)benzoic acid (Azo-COOH). Differential scanning calorimetry (DSC) revealed that the thermal curing temperatures of AMBZ and AEBZ (both ca. 230 °C) were lower than that of a typical Pa-type benzoxazine monomer (263 °C), suggesting that the azobenzene and COOH units acted as promoters and catalysts for the ROP of the benzoxazine units. In addition, after ROP of the benzoxazine units of AMBZ and AEBZ, the polymers PAMBZ and PAEBZ, respectively, displayed high glass transition temperatures (Tg) and high thermal stability, as evidenced using DSC and thermogravimetric analysis (TGA), due to their greater cross-linking densities. We used Brunauer–Emmett–Teller analysis, TGA, wide-angle X-ray diffraction, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy to examine the specific surface areas, porous structures, chemical compositions, and thermal stabilities of the resulting KOH-activated NMCs PAMBZ-A and PAEBZ-A. The CO2 capture abilities and thermal properties of these two highly-nitrogen-doped microporous carbons, synthesized from polybenzoxazine (PBZ) resins containing azobenzene and COOH groups, were excellent when compared with those of other N-doped porous carbons derived from other PBZ matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang G, Leus K, Zhao S, Voort PVD (2018) Newly designed covalent Triazine framework based on novel N-Heteroaromatic building blocks for efficient CO2 and H2 capture and storage. ACS Appl Mater Interfaces 10:1244–1249

    CAS  PubMed  Google Scholar 

  2. Wang Q, Luo J, Zhong Z, Borgna A (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4:42–55

    CAS  Google Scholar 

  3. Ahmed, D. S., El-Hiti, G. A.; Yousif, E., Ali, A. A., and Hamed, A. S. (2018). Design and synthesis of porous polymeric materials and their applications in gas capture and storage: a review 25, 75

  4. EL-Mahdy AFM, Kuo CH, Alshehri A, Young C, Yamauchi Y, Kim J, Kuo SW (2018) Strategic design of triphenylamine-and triphenyltriazine-based two-dimensional covalent organic frameworks for CO2 uptake and energy storage. J Mater Chem A 6:19532–19541

    CAS  Google Scholar 

  5. Adeniran B, Masika E, Mokaya RA (2014) Family of microporous carbons prepared via a simple metal salt carbonization route with high selectivity for exceptional gravimetric and volumetric post-combustion CO2 capture. J Mater Chem A 2:14696–14710

    CAS  Google Scholar 

  6. Rao AB, Rubin ESA (2002) Technical, economic, and environmental assessment of amine-based CO2 capture Technology for Power Plant Greenhouse gas Control. Environ Sci Technol 36:4467–4475

    CAS  PubMed  Google Scholar 

  7. Choi S, Gray MML, Jones CW (2011) Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air. ChemSusChem. 4:628–635

    CAS  PubMed  Google Scholar 

  8. Wang Y, Dong L, Lai G, Wei M, Jiang X, Bai L (2019) Nitrogen-doped hierarchically porous carbons derived from Polybenzoxazine for enhanced Supercapacitor performance. Nanomaterials 9:131–140

    PubMed Central  Google Scholar 

  9. Mohamed MG, El-Mahdy AFM, Ahmed MMM, Kuo SW (2019) Direct synthesis of microporous Bicarbazole-based covalent Triazine frameworks for high-performance energy storage and carbon dioxide uptake. ChemPlusChem 84:1767–1774

    CAS  PubMed  Google Scholar 

  10. Dutta S, Bhaumik A, Wu KCW (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7:3574–3592

    CAS  Google Scholar 

  11. Mohamed MG, EL-Mahdy AFM, Takashi Y, Kuo SW (2020) Ultrastable conductive microporous covalent triazine frameworks based on pyrene moieties provide high-performance CO2 uptake and supercapacitance. New J Chem 44:8241–8253

    CAS  Google Scholar 

  12. Wang HL, Yang Y, Liang YY, Robinson JT, Li YG, Jackson A, Cui Y, Dai HJ (2011) Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11:2644–2647

    CAS  PubMed  Google Scholar 

  13. Kelly TL, Gao T, Sailor MJ (2011) Carbon and carbon/silicon composites Templated in Rugate filters for the adsorption and detection of organic vapors. Adv Mater 3:1776–1781

    Google Scholar 

  14. EL-Mahdy AFM, Young C, Kim J, You J, Yamauchi Y, Kuo SW (2019) Hollow Microspherical and Microtubular [3+ 3] Carbazole-Based Covalent Organic Frameworks and Their Gas and Energy Storage Applications. ACS Appl Mater Interfaces 11:9343–9354

    CAS  PubMed  Google Scholar 

  15. Fang BZ, Kim JH, Kim MS, Yu JS (2009) Ordered hierarchical nanostructured carbon as a highly efficient cathode catalyst support in proton exchange membrane fuel cell. Chem Mater 21:789–796

    CAS  Google Scholar 

  16. EL-Mahdy AFM, Liu TE, Kuo SW (2020) Direct Synthesis of Nitrogen-Doped Mesoporous Carbons from Triazine-Functionalized Resol for CO2 Uptake and Highly Efficient Removal of Dyes. J Hazard Mater 391:122163

    CAS  PubMed  Google Scholar 

  17. Lee J, Kim J, Hyeon T (2006) Recent Progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094

    CAS  Google Scholar 

  18. Xu S, Luo Y, Tan B (2013) Recent development of hypercrosslinked microporous organic polymers. Macromol Rapid Commun 34:471–484

    CAS  PubMed  Google Scholar 

  19. Niu W, Li L, Liu X, Wang N, Liu J, Zhou W, Tang Z, Chen S (2015) Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: an efficient Electrocatalyst for oxygen reduction reaction. J Am Chem Soc 137:5555–5562

    CAS  Google Scholar 

  20. Meng Y, Gu D, Zhang F, Shi Y, Yang H, Li Z, Yu C, Tu B, Zhao D (2005) Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew Chem Int Ed 44:7053–7059

    CAS  Google Scholar 

  21. Kou J, Sun LB (2016) Nitrogen-doped porous carbons derived from carbonization of a nitrogen-containing polymer: efficient adsorbents for selective CO2 capture. Ind Eng Chem Res 55:10916–10925

    CAS  Google Scholar 

  22. Casco ME, Kirchhoff S, Leistenschneider D, Rauche M, Brunner E, Borchardt L (2019) Mechanochemical synthesis of N-doped porous carbon at room temperature. Nanoscale 11:4712–4718

    CAS  PubMed  Google Scholar 

  23. Xu S, He J, Jin S, Tan B (2018) Heteroatom-rich porous organic polymers constructed by benzoxazine linkage with high carbon dioxide adsorption affinity. J Colloid Interface Sci 509:457–462

    CAS  PubMed  Google Scholar 

  24. Cui X, Yang Q, Xiong Y, Bao Z, Xing H, Dai S (2017) Preparation of ordered N-doped mesoporous carbon materials via a polymer–ionic liquid assembly. Chem Commun 53:4915–4918

    CAS  Google Scholar 

  25. Chu WC, Bastakoti BP, Kaneti YV, Li JG, Yamauchi Y, Alamri HR, Alothman ZA, Kuo SW (2017) Tailored Design of Bicontinuous Gyroid Mesoporous Carbon and Nitrogen-Doped Carbon from Poly (ethylene oxide-b-caprolactone) Diblock Copolymers. Chem Eur J 23:13734–13741

    CAS  PubMed  Google Scholar 

  26. Li JG, Ho YF, Ahmed MMM, Liang HC, Kuo SW (2019) Mesoporous Carbons Templated by PEO-PCL Block Copolymers as Electrode Materials for Supercapacitors. Chem Eur J 25:10456–10463

    CAS  PubMed  Google Scholar 

  27. Mohamed MG, Kuo SW (2020) Crown ether-functionalized Polybenzoxazine for metal ion adsorption. Macromolecules 2020(53):2420–2429

    Google Scholar 

  28. Zhang K, Han L, Froimowicz P, Ishida H (2017) Smart latent catalyst containing o-trifluoroacetamide functional benzoxazine: precursor for low temperature formation of very high performance polybenzoxazole with low dielectric constant and high thermal stability. Macromolecules 50:6552–6560

    CAS  Google Scholar 

  29. Mohamed MG, Kuo SW (2019) Functional silica and carbon Nanocomposites based on Polybenzoxazines. Macromol Chem Phys 220:1800306

    Google Scholar 

  30. Zhang K, Liu Y, Ishida H (2019) Polymerization of an AB-type Benzoxazine monomer toward different Polybenzoxazine networks: when Diels–Alder reaction meets Benzoxazine chemistry in a single-component resin. Macromolecules 52:7386–7395

    CAS  Google Scholar 

  31. Lin RC, Mohamed MG, Kuo SW Benzoxazine/Triphenylamine-Based Dendrimers Prepared through Facile One-Pot Mannich Condensations. Macromol Rapid Commun 38:1700251

  32. Lin RC, Kuo SW (2018) Well-defined benzoxazine/triphenylamine-based hyperbranched polymers with controlled degree of branching. RSC Adv 8:13592–13611

    CAS  Google Scholar 

  33. Muthukaruppan A, Arumugam H, Krishnan S, Kannan K, Chavali MA (2018) Low cure thermo active polymerization of chalcone based benzoxazine and cross linkable olefin blends. J Polym Res 25:163

    Google Scholar 

  34. Chen WC, Kuo SW (2018) Ortho-imide and Allyl groups effect on highly thermally stable Polybenzoxazine/double-Decker-shaped polyhedral Silsesquioxane hybrids. Macromolecules 51:9602–9612

    CAS  Google Scholar 

  35. Kuo SW, Wu YC, Wang CF, Jeong KU (2009) Preparation low surface energy polymer materials by minimizing intermolecular hydrogen bonding interaction. J Phys Chem C 113:20666–20673

    CAS  Google Scholar 

  36. Liao YT, Lin YC, Kuo SW (2017) Highly thermally stable, transparent, and flexible Polybenzoxazine Nanocomposites by combination of double-Decker-shaped polyhedral Silsesquioxanes and Polydimethylsiloxane. Macromolecules 50:5739–5747

    CAS  Google Scholar 

  37. Liu N, Li L, Wang L, Zhang S (2017) Organic-inorganic polybenzoxazine copolymers with double decker silsesquioxanes in the main chains: synthesis and thermally activated ring-opening polymerization behavior. Polymer 109:254–265

    CAS  Google Scholar 

  38. Zhang R, Lu X, Lou C, Zhou C, Xin Z (2019) Preparation of diamine-based polybenzoxazine coating for corrosion protection on mild steel. J Polym Res 26:29

    Google Scholar 

  39. Zhang K, Yu X, Wang Y, Liu Y (2019) Thermally activated structural changes of a Norbornene–Benzoxazine–Phthalonitrile thermosetting system: simple synthesis, self-catalyzed polymerization, and outstanding flame Retardancy. ACS Appl Polym Mater 1:2713–2722

    CAS  Google Scholar 

  40. Mohamed MG, Lin RC, Tu JH, Lu FH, Hong JL, Jeong KU, Wang CF, Kuo SW (2015) Thermal property of an aggregation-induced emission fluorophore that forms metal–ligand complexes with Zn (ClO4)2 of salicylaldehyde azine-functionalized polybenzoxazine. RSC Adv 5:65635–65645

    CAS  Google Scholar 

  41. Arslan M, Kiskan B, Yagci Y (2018) Benzoxazine-based thermoset with autonomous self-healing and shape recovery. Macromolecules 51:10095–10103

    CAS  Google Scholar 

  42. Aly KI, Mohamed MG, Younis O, Mahross MH, Hakim MA, Sayed MM (2020) Salicylaldehyde azine-functionalized polybenzoxazine: synthesis, characterization, and its nanocomposites as coatings for inhibiting the mild steel corrosion. Prog Org Coat 138:105385–105395

    Google Scholar 

  43. Zhou C, Tao M, Liu J, Liu T, Lu X, Xin Z (2019) Effects of interfacial interaction on corrosion resistance of Polybenzoxazine/SiO2 Nanocomposite coatings. ACS Appl Polym Mater 1:381–391

    CAS  Google Scholar 

  44. Araz CR, Ishida H, Maurer FH (2014) Quantifying dispersion in Graphene oxide/reactive Benzoxazine monomer Nanocomposites. Macromolecules 47:3685–3692

    Google Scholar 

  45. Mohamed MG, Hsu KC, Kuo SW (2015) Bifunctional polybenzoxazine nanocomposites containing photo-crosslinkable coumarin units and pyrene units capable of dispersing single-walled carbon nanotubes. Polym Chem 6:2423–2433

    CAS  Google Scholar 

  46. Zhang J, Zhang W, Han M, Pang J, Xiang Y, Cao G, Yang Y (2018) Synthesis of nitrogen-doped polymeric resin-derived porous carbon for high performance supercapacitors. Microporous Mesoporous Mater 270:204–210

    CAS  Google Scholar 

  47. Mohamed MG, Hsiao CH, Luo F, Dai L, Kuo SW (2015) Multifunctional polybenzoxazine nanocomposites containing photoresponsive azobenzene units. Catalytic carboxylic acid groups, and pyrene units capable of dispersing carbon nanotubes. RSC Adv 5:45201–45212

    CAS  Google Scholar 

  48. Zhang K, Liu Y, Evans CJ, Yang H (2020) Easily Processable thermosets with outstanding performance via smart twisted small-molecule Benzoxazines. Macromol Chem Phys 41:1900625–1900630

    CAS  Google Scholar 

  49. Zhang K, Yu X, Kuo SW (2019) Outstanding dielectric and thermal properties of main chain-type poly (benzoxazine-co-imide-co-siloxane)-based cross-linked networks. Polym Chem 10:2387–2396

    CAS  Google Scholar 

  50. Mohamed MG, Kuo SW (2016) Polybenzoxazine/polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites. Polymers 8:225

    PubMed Central  Google Scholar 

  51. Konnola R, Anirudhan TS (2020) Efficient carbon dioxide capture by nitrogen and sulfur dual-doped mesoporous carbon spheres from polybenzoxazines synthesized by a simple strategy. J Environ Chem Eng 8:103614–103624

    CAS  Google Scholar 

  52. Mohamed MG, Tsai MY, Su WC, EL-Mahdy AFM, Wang CF, Huang CF, Dai L, Chen T, Kuo SW (2020) Nitrogen-doped microporous carbons derived from azobenzene and nitrile-functionalized polybenzoxazines for CO2 uptake. Mater Today Commun 24:101111

    CAS  Google Scholar 

  53. Wu JY, Mohamed MG, Kuo SW (2017) Directly synthesized nitrogen-doped microporous carbons from polybenzoxazine resins for carbon dioxide capture. Polym Chem 8:5481–5489

    CAS  Google Scholar 

  54. Wan L, Wang J, Sun Y, Feng C, Li K (2015) Polybenzoxazine-based nitrogen-containing porous carbons for high-performance supercapacitor electrodes and carbon dioxide capture. RSC Adv 5:5331–5342

    CAS  Google Scholar 

  55. Hao GP, Li WC, Qian D, Wang GH, Zhang WP, Zhang T, Wang AQ, Schuth F, Bongard HJ, Lu AH (2011) Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. J Am Chem Soc 113:11378–11388

    Google Scholar 

  56. Liu Y, Cao L, Luo J, Peng Y, Ji Q, Dai J, Zhu J, Liu X (2019) Biobased nitrogen- and oxygen-Codoped carbon materials for high-performance Supercapacitor. ACS Sustain Chem Eng 7:2763–2773

    CAS  Google Scholar 

  57. Shi W, Zhang X, Ji Y, Zhao Z, Li W, Jia X (2019) Sustainable preparation of bio-based Polybenzoxazine resins from amino acid and their application in CO2 adsorption. ACS Sustain Chem Eng 7:17313–17324

    CAS  Google Scholar 

  58. Hao GP, Li WC, Qian D, Lu AH (2010) Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv Mater 22:853–857

    CAS  PubMed  Google Scholar 

  59. Sun X, Li J, Wang W, Ma Q (2018) Constructing benzoxazine-containing porous organic polymers for carbon dioxide and hydrogen sorption. Eur Polym J 107:89–95

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Gamal Mohamed, Shiao-Wei Kuo or Kamal I. Aly.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1009 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, M.G., Ebrahium, S.M., Hammam, A.S. et al. Enhanced CO2 capture in nitrogen-enriched microporous carbons derived from Polybenzoxazines containing azobenzene and carboxylic acid units. J Polym Res 27, 197 (2020). https://doi.org/10.1007/s10965-020-02179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02179-1

Keywords

Navigation