Skip to main content
Log in

Thermo-oxidative degradation of vulcanized SBR: A comparison between ultraviolet (UV) and microwave as recovery techniques

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This study reports a comparison of thermal-oxidative vulcanized SBR degradation caused by Ultraviolet (UV) or Microwave (MW) irradiations. The surface modifications of the rubber samples were explored by instrumental techniques. The cross-linking degree of the rubber was determined via leaching method and the contact angles with water were measured at room temperature. By increasing the exposure time, the UV-treated v-SBR kept 83.24, 62.65, 39.86 and 33.32% of crosslinks, while the MW-treated samples kept 94.78, 88.85, 86.98 and 80.40%. Besides that, the contact angle was decreased drastically after the UV treatment registering 83.70°, 52.45°, 34.75°, 6.0°, while the MW-treated samples had no significant change in the contact angles values. Fourier Transform Infrared (FTIR) findings indicate that part of the polymeric chain was altered through C–C and C-S bond scissions (softening mechanism) calling the attention to a degradation beside the devulcanization phenomenon (regeneration), corroborated by the total carbon and sulfur mass balance. Assuming that the same energy is applied, the UV irradiation present a very strong regeneration effect comparing to MW irradiations. The results are promising, highlighting UV irradiations as a very strong regeneration tool of rubber which is considered a beneficial for the rubber residue problem facilitating its insertion in new composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aatmeeyata SM (2010) Polycyclic aromatic hydrocarbons, elemental and organic carbon emissions from tire-wear. Sci Total Environ 408:4563–4568. https://doi.org/10.1016/j.scitotenv.2010.06.011

    Article  CAS  PubMed  Google Scholar 

  2. Adhikari B, De D, Maiti S (2000) Reclamation and recycling of waste rubber. Prog Polym Sci 25:909–948. https://doi.org/10.1016/S0079-6700(00)00020-4

    Article  CAS  Google Scholar 

  3. Ali Shah A, Hasan F, Shah Z et al (2013) Biodegradation of natural and synthetic rubbers: A review. Int Biodeterior Biodegradation 83:145–157

    Article  CAS  Google Scholar 

  4. Artíñano B, Gómez-Moreno FJ, Díaz E et al (2017) Outdoor and indoor particle characterization from a large and uncontrolled combustion of a tire landfill. Sci Total Environ 593–594:543–551. https://doi.org/10.1016/j.scitotenv.2017.03.148

    Article  CAS  PubMed  Google Scholar 

  5. Aboelkheir MG, Bedor PB, Leite SG et al (2019) Biodegradation of Vulcanized SBR: A Comparison between Bacillus subtilis, Pseudomonas aeruginosa and Streptomyces sp. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-55530-y

    Article  CAS  Google Scholar 

  6. Aboelkheir MG, Visconte LY, Oliveira GE et al (2019) The biodegradative effect of Tenebrio molitor Linnaeus larvae on vulcanized SBR and tire crumb. Sci Total Environ 649:1075–1082. https://doi.org/10.1016/j.scitotenv.2018.08.228

    Article  CAS  PubMed  Google Scholar 

  7. Aboelkheir M, Siqueira CYS, Souza FG, Filho RDT (2018) Influence of styrene-butadiene co-polymer on the hydration kinetics of SBR-modified well cement slurries. Macromol Symp 380:1800131. https://doi.org/10.1002/masy.201800131

    Article  CAS  Google Scholar 

  8. Sato S, Honda Y, Kuwahara M, Watanabe T (2003) Degradation of vulcanized and nonvulcanized polyisoprene rubbers by lipid peroxidation catalyzed by oxidative enzymes and transition metals. Biomacromol 4:321–329. https://doi.org/10.1021/bm025683k

    Article  CAS  Google Scholar 

  9. Gisbert AN, Amorós JEC, Martínez JL, Garcia AM (2007) Study of thermal degradation kinetics of elastomeric powder (ground tire rubber). Polym-Plast Technol Eng 47:36–39. https://doi.org/10.1080/03602550701580870

    Article  CAS  Google Scholar 

  10. Aboelkheir M, Filho RDT, Souza Jr FG (2019) Study on vulcanized rubber degradation after exposure to ultraviolet irradiation. 15th Brazilian Polymer Conference (CBPOL)

  11. Aoudia K, Azem S, Aït Hocine N et al (2017) Recycling of waste tire rubber: Microwave devulcanization and incorporation in a thermoset resin. Waste Manage 60:471–481. https://doi.org/10.1016/j.wasman.2016.10.051

    Article  CAS  Google Scholar 

  12. CROW (2015) Thermal-oxidative degradation of rubber. In: Polymer Properties Database. http://polymerdatabase.com/polymer%20chemistry/Thermal%20Degradation%20Elastomers.html. Accessed 9 Mar 2019

  13. Joseph AM, George B, Madhusoodanan KN, Alex R (2015) Current status of sulphur vulcanization and devulcanization chemistry: process of vulcanization. Rubber Science 28:82–121

    Google Scholar 

  14. Kwon E, Castaldi MJ (2008) Investigation of Mechanisms of Polycyclic Aromatic Hydrocarbons (PAHs) Initiated from the Thermal Degradation of Styrene Butadiene Rubber (SBR) in N2 Atmosphere. Environ Sci Technol 42:2175–2180. https://doi.org/10.1021/es7026532

    Article  CAS  PubMed  Google Scholar 

  15. Kwon E, Castaldi MJ (2009) Fundamental understanding of the thermal degradation mechanisms of waste tires and their air pollutant generation in a N2 atmosphere. Environ Sci Technol 43:5996–6002. https://doi.org/10.1021/es900564b

    Article  CAS  PubMed  Google Scholar 

  16. Aguele FO, Idiaghe JA, Apugo-Nwosu TU (2015) A study of quality improvement of natural rubber products by drying methods. Journal of Materials Science and Chemical Engineering 03:7. https://doi.org/10.4236/msce.2015.311002

    Article  CAS  Google Scholar 

  17. Boon AJ (1998) Hock cleavage. The cause of main-chain scission in natural rubber autoxidation? J Nat Rubb Res 3

  18. Duh Y-S, Ho T-C, Chen J-R, Kao C-S (2010) Study on Exothermic Oxidation of Acrylonitrile-butadiene-styrene (ABS) Resin Powder with Application to ABS Processing Safety. Polymers 2:174–187. https://doi.org/10.3390/polym2030174

    Article  CAS  Google Scholar 

  19. Liu J, Liu P, Zhang X et al (2016) Fabrication of magnetic rubber composites by recycling waste rubber powders via a microwave-assisted in situ surface modification and semi-devulcanization process. Chem Eng J 295:73–79. https://doi.org/10.1016/j.cej.2016.03.025

    Article  CAS  Google Scholar 

  20. Romero-Sánchez MD, Pastor-Blas MM, del Pilar F-Gómez T, Martı́n-Martı́nez JM, (2001) Durability of the halogenation in synthetic rubber. Int J Adhes Adhes 21:101–106. https://doi.org/10.1016/S0143-7496(00)00039-7

    Article  Google Scholar 

  21. Romero-Sánchez MD, Pastor-Blas MM, Martı́n-Martı́nez JM, (2005) Environmental friendly surface treatments of styrene–butadiene–styrene rubber: alternatives to the solvent-based halogenation treatment. Int J Adhes Adhes 25:19–29. https://doi.org/10.1016/j.ijadhadh.2004.03.001

    Article  CAS  Google Scholar 

  22. Antil Y, Verma ErV, Singh B (2014) Rubberized Concrete Made with Crumb Rubber. Int J Sci Res (IJSR) 3

  23. Bisht K, Ramana PV (2017) Evaluation of mechanical and durability properties of crumb rubber concrete. Constr Build Mater 155:811–817. https://doi.org/10.1016/j.conbuildmat.2017.08.131

    Article  Google Scholar 

  24. Faraz MI, Jain U, Jain K, et al (2015) Effect of Crumb Rubber Material on Concrete Mix. ResearchGate 2

  25. Gonen T (2018) Freezing-thawing and impact resistance of concretes containing waste crumb rubbers. Constr Build Mater 177:436–442. https://doi.org/10.1016/j.conbuildmat.2018.05.105

    Article  CAS  Google Scholar 

  26. Veilleux J, Rodrigue D (2016) EBSCOhost | 115746635 | Properties of Recycled PS/SBR Blends: Effect of SBR Pretreatment

  27. Abreu Junior HMB, Nunes RCR, Visconte LLY (2010) Misturas NR/SBR: Influência da Composição e do Modo de Preparação Sobre Propriedades Mecânicas e Reométricas 20:1–5

    Google Scholar 

  28. de Sousa FDB, Scuracchio CH, Hu G-H, Hoppe S (2017) Devulcanization of waste tire rubber by microwaves. Polym Degrad Stab 138:169–181. https://doi.org/10.1016/j.polymdegradstab.2017.03.008

    Article  CAS  Google Scholar 

  29. Wang S, Zhang F-D, Huang A-M, Zhou Q (2015) Distinction of four Dalbergia species by FTIR, 2nd derivative IR, and 2D-IR spectroscopy of their ethanol-benzene extractives. 70:. https://doi.org/https://doi.org/10.1515/hf-2015-0125

  30. Buonerba A, Speranza V, Canton P et al (2014) Novel nanostructured semicrystalline ionomers by chemoselective sulfonation of multiblock copolymers of syndiotactic polystyrene with polybutadiene. RSC Adv 4:60158–60167. https://doi.org/10.1039/C4RA13253J

    Article  CAS  Google Scholar 

  31. Shao L, Ji Z-Y, Ma J-Z et al (2016) The synergy of double cross-linking agents on the properties of styrene butadiene rubber foams. Sci Rep 6:36931

    Article  Google Scholar 

  32. Silverstein RM, Webster FX (2000) Identificação Espectrométrica de Compostos Orgânicos, 6a ed. LTC Livros Técnicos e Científicos

  33. Galvagno S, Casu S, Martino M et al (2007) Thermal and kinetic study of tyre waste pyrolysis via TG-FTIR-MS analysis. J Therm Anal Calorim 88:507–514. https://doi.org/10.1007/s10973-006-8409-1

    Article  CAS  Google Scholar 

  34. López FA, El Hadad AA, Alguacil FJ et al (2013) Kinetics of the thermal degradation of granulated scrap tyres: a model-free analysis. Mater Sci 19:403–408. https://doi.org/10.5755/j01.ms.19.4.2947

    Article  Google Scholar 

  35. Janowska G, Rybiński P (2009) Polimery - Influence of network structures of nitrile rubbers on their thermal properties. 4

Download references

Acknowledgments

The authors would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—Finance Code 001), Financiadora de Estudos e Projetos (FINEP PRESAL Ref.1889/10) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) for the financial support and scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa G. Aboelkheir.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboelkheir, M.G., Lima Junior, J.G., Toledo Filho, R.D. et al. Thermo-oxidative degradation of vulcanized SBR: A comparison between ultraviolet (UV) and microwave as recovery techniques. J Polym Res 28, 141 (2021). https://doi.org/10.1007/s10965-021-02497-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02497-y

Keywords

Navigation