Skip to main content
Log in

Diglycolamide functionalized multi-walled carbon nanotubes for removal of uranium from aqueous solution by adsorption

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Diglycolamide functionalized multi-walled carbon nanotubes (DGA-MWCNTs) were synthesized by sequential chemical reactions for removal of uranium from aqueous solution. Characterization studies were carried out using FT-IR spectroscopy, XRD and SEM analysis. Adsorption of uranium from aqueous solution on this material was studied as a function of nitric acid concentration, adsorbent dose and initial uranium concentration. The uranium adsorption data on DGA-MWCNTs followed the Langmuir and Freundlich adsorption isotherms. The adsorption capacity of DGA-MWCNTs as well as adsorption isotherms and the effect of temperature on uranium ion adsorption were investigated. The standard enthalpy, entropy, and free energy of adsorption of the uranium with DGA-MWCNTs were calculated to be 6.09 kJ mole−1, 0.106 kJ mole−1 K−1 and −25.51 kJ mole−1 respectively at 298K. The results suggest that DGA-MWCNTs can be used as efficient adsorbent for uranium ion removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Long RQ, Yang RT (2001) J Am Chem Soc 123:2058–2059

    Article  CAS  Google Scholar 

  3. Liao Q, Sun J, Gao L (2008) Colloids Surf A Physicochem Eng Aspects 312:160–165

    Article  CAS  Google Scholar 

  4. Goering J, Burghus U (2007) Chem Phys Lett 447:121–126

    Article  CAS  Google Scholar 

  5. Yang K, Xing B (2009) Environ Pollut 157:1095–1100

    Article  CAS  Google Scholar 

  6. Lu C, Chung YL, Chang KF (2005) Water Res 39:1183–1189

    Article  CAS  Google Scholar 

  7. Ma X, Anand D, Zhang X, Talapatra S (2011) J Phys Chem C 115(11):4552–4557

    Article  CAS  Google Scholar 

  8. Lin D, Xing B (2008) Environ Sci Technol 42(19):7254–7259

    Article  CAS  Google Scholar 

  9. Ghaedi M, Hassanzadeh A, Nasiri Kokhdan S (2011) J Chem Eng Data 56(5):2511–2520

    Article  CAS  Google Scholar 

  10. Ramos MA, Borges JH, Miquel TMB, Delgado MAR (2009) Anal Chim Acta 647:167–176

    Article  Google Scholar 

  11. Li YH, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, Wei B (2003) Carbon 41:2787–2792

    Article  CAS  Google Scholar 

  12. Li H, Pan L, Zhang Y, Sun Z (2009) Water Sci Technol 59.8:1657–1663

    Google Scholar 

  13. Lu C, Chiu H (2006) Chem Eng Sci 61:1138–1145

    Article  CAS  Google Scholar 

  14. Lu C, Liu C (2006) J Chem Technol Biotechnol 81:1932–1940

    Article  CAS  Google Scholar 

  15. Hu J, Chen C, Zhu X, Wang X (2009) J Hazard Mat 162:1542–1550

    Article  CAS  Google Scholar 

  16. Stafiej A, Pyrzynska K (2007) Sep Purifi Technol 58:49–52

    Article  CAS  Google Scholar 

  17. Chen C, Hu J, Shao D, Li J, Wang X (2009) J Hazard Mat 164:923–928

    Article  CAS  Google Scholar 

  18. Ding Q, Liang P, Song F, Xiang A (2006) Sep Sci Technol 41:2723–2732

    Article  CAS  Google Scholar 

  19. Upadhyayula VKK, Deng S, Mitchell MC, Smith GB (2009) Sci Total Environ 408:1–13

    Article  CAS  Google Scholar 

  20. Chen CL, Li XL, Wang XK (2007) Radiochim Acta 95:261–266

    Article  CAS  Google Scholar 

  21. Tan XL, Chen CL, Wang XK, Hu WP (2008) Radiochim Acta 96:23–29

    Article  CAS  Google Scholar 

  22. Wang X, Chen C, Hu W, Ding A, Xu D, Zhou X (2005) Environ Sci Technol 39:2856–2860

    Article  CAS  Google Scholar 

  23. Schierz A, Zanker H (2009) Environ Pollut 157:1088–1094

    Article  CAS  Google Scholar 

  24. Perevalov SA, Molochnikova NP (2009) J Radioanal Nucl Chem 281:603–608

    Article  CAS  Google Scholar 

  25. Zhang Y, Bai Y, Yan B (2010) Drug Discov Today 15(11/12):428–435

    Article  CAS  Google Scholar 

  26. Hauke F, Hirsch A (2010) Covalent Functionalization of Carbon Nanotubes. In: Guldi DM, Martín N (eds) Carbon nanotubes and related structures: synthesis, characterization, functionalization, and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  27. Lu C, Chiu H (2008) Chem Eng J 139:462–468

    Article  CAS  Google Scholar 

  28. Mishra AK, Arockiadoss T, Ramaprabhu S (2010) Chem Eng J 162:1026–1034

    Article  CAS  Google Scholar 

  29. Liu Y, Wu ZQ, Yan XP (2009) Talanta 79:1464–1471

    Article  CAS  Google Scholar 

  30. Afzali D, Mostafavi A (2008) Anal Sci 24:1135–1139

    Article  CAS  Google Scholar 

  31. Gupta KK, Manchanda VK, Subramanian MS, Singh RK (2000) Sol Extr Ion Exch 1:273–292

    Article  Google Scholar 

  32. Sasaki Y, Choppin GR (1996) Anal Sci 12:225–230

    Article  CAS  Google Scholar 

  33. Sharma JN, Ruhela R, Harindaran KN, Mishra SL, Tangri SK, Suri AK (2008) J Radioanal Nucl Chem 278(1):173–177

    Article  CAS  Google Scholar 

  34. Ansari SA, Pathak PN, Husain M, Prasad AK, Parmar VS, Manchanda VK (2006) Talanta 68:1273–1280

    Article  CAS  Google Scholar 

  35. Ansari SA, Mohapatra PK, Prabhu DR, Manchanda VK (2007) J Membr Sci 298:169–174

    Article  CAS  Google Scholar 

  36. Horwitz EP, McAlister DR, Bond AH, Barrans RE (2005) Solvent Extr Ion Exch 23:319–344

    Article  CAS  Google Scholar 

  37. Dialo MS, Arasho W, Johnson JH, Goddard WA (2008) Environ Sci Technol 42:1279–1572

    Article  Google Scholar 

  38. Mahanandia P, Vishwakarma PN, Nanda KK, Prasad V, Subramanyam SV, Dev SK, Satyam PV (2006) Mater Res Bull 41:2311–2317

    Article  CAS  Google Scholar 

  39. Shen J, Huang W, Wu L, Hu Y, Ye M (2007) Mater Sci Eng A 464:151–156

    Article  Google Scholar 

  40. Shaibu SS, Reddy MLP, Murali MS, Manchanda VK (2007) Radiochim Acta 95:159–164

    Article  CAS  Google Scholar 

  41. Van Hecke K, Modolo G (2004) J Radioanal Nucl Chem 261:269–275

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Shri S.·C. Chetal, Director, IGCAR for his constant encouragements during this work. The authors thank Dr. K. Sivasubramanian, Dr. M.T. Jose, Smt. O. Annalaxmi and Ms. Anisha, Shri H. Krishnan, Shri B.·N. Mohanty, Shri Shailesh Joshi, RSD, IGCAR for their help during the experiments and analysis. The authors also thank Dr. M. Kamuruddin, SND, MSG for SEM analysis, Shri R.M. Sarguna, CMPD, MSG for XRD analysis and Shri Ajay Rawat, RSD, IGCAR for isotherm modeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Kumar Singha Deb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deb, A.K.S., Ilaiyaraja, P., Ponraju, D. et al. Diglycolamide functionalized multi-walled carbon nanotubes for removal of uranium from aqueous solution by adsorption. J Radioanal Nucl Chem 291, 877–883 (2012). https://doi.org/10.1007/s10967-011-1366-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1366-6

Keywords

Navigation