Skip to main content
Log in

Removal of uranium(VI) from aqueous solution using citric acid modified pine sawdust: batch and column studies

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study described adsorption of uranium(VI) by citric acid modified pine sawdust (CAMPS) in batch and fixed-bed column modes at 295 K. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Koble–Corrigan and Dubinin–Radushkevich isotherm models. The results indicated that the Langmuir and Koble–Corrigan models provided the best correlation of the experimental data. The Elovish model was better to fit the kinetic process, which suggested that ion exchange was one of main mechanism. The effective diffusion parameter D i values indicated that the intraparticle diffusion was not the rate-controlling step. In fixed-bed column adsorption, the effects of bed height, feed flow rate, and inlet uranium (VI) concentration were studied by assessing breakthrough curve. The Thomas, the Yan and the bed-depth/service time (BDST) models were applied to the column experimental data to determine the characteristic parameters of the column adsorption. The results were implied that CAMPS may be suitable as an adsorbent material for adsorption of uranium (VI) from an aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Donat R, Esen K, Cetisli H, Aytas S (2009) J Radioanal Nucl Chem 279:253

    Article  CAS  Google Scholar 

  2. Humelnicu D, Drochioiu G, Sturza MI, Cecal A, Popa K (2006) J Radioanal Nucl Chem 270:637

    Article  CAS  Google Scholar 

  3. Donia AM, Atia AA, Moussa MM, Sherif AM, Magied MO (2009) Hydrometallurgy 95:183

    Article  CAS  Google Scholar 

  4. Ganesh R, Robinson KG, Chu LL, Kucsmas D, Reed GD (1999) Water Res 33:3447

    Article  CAS  Google Scholar 

  5. Kryvoruchko AP, Yurlova LY, Atamanenko ID, Kornilovich BY (2004) Desalination 162:229

    Article  CAS  Google Scholar 

  6. Mellah A, Chegrouche S, Barkat M (2006) J Colloid Interface Sci 296:434

    Article  CAS  Google Scholar 

  7. Kadous A, Didi M, Villemin D (2009) J Radioanal Nucl Chem 280:157

    Article  CAS  Google Scholar 

  8. Sodayea H, Nisanb S, Poletikoc C, Prabhakara S, Tewaria PK (2009) Desalination 235:9

    Article  Google Scholar 

  9. Morsy AMA, Hussein AEM (2011) J Radioanal Nucl Chem 288:341

    Article  CAS  Google Scholar 

  10. Zou WH, Zhao L, Han RP (2011) J Radioanal Nucl Chem 288:239

    Article  CAS  Google Scholar 

  11. Zou WH, Bai HJ, Zhao L, Li K, Han RP (2011) J Radioanal Nucl Chem 288:779

    Article  CAS  Google Scholar 

  12. Aytas SO, Akyil S, Eral M (2004) J Radioanal Nucl Chem 260:119

    Article  CAS  Google Scholar 

  13. Bishay AF (2010) J Radioanal Nucl Chem 286:81

    Article  CAS  Google Scholar 

  14. Bagherifam S, Lakzian A, Ahmedi SJ, Rahimi MF, Halajnia A (2010) J Radioanal Nucl Chem 283:289

    Article  CAS  Google Scholar 

  15. Vaughan T, Seo CW, Marshall WE (2001) Bioresour Technol 78:133

    Article  CAS  Google Scholar 

  16. Šćiban M, Klašnja M, Škrbić B (2008) Desalination 229:170

    Article  Google Scholar 

  17. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Bioresour Technol 99:6709

    Article  Google Scholar 

  18. Sciban M, Radetic B, Kevresan Z, Klasnja M (2007) Bioresour Technol 98:402

    Article  CAS  Google Scholar 

  19. Zhang H, Tang Y, Liu XN, Ke ZG, Su X, Cai DQ, Wang XQ, Liu YD, Huang Q, Yu ZL (2011) Desalination 274:97

    Article  CAS  Google Scholar 

  20. Misaelides P, Godelitsas A, Filippidis A, Charistos D, Anousi I (1995) Sci Total Environ 173/174:237

    Article  CAS  Google Scholar 

  21. Guibal E, Lorenzelli R, Vincent T, Cloirec PL (1995) Environ Technol 16:101

    Article  CAS  Google Scholar 

  22. Balistrieri LS, Murray JW (1981) Am J Sci 281:788

    Article  CAS  Google Scholar 

  23. Barnett MO, Jardine PM, Brooks SC, Selim HM (2000) Soil Sci Soc Am J 64:908

    Article  CAS  Google Scholar 

  24. Langmuir I (1916) J Am Chem Soc 38:2221

    Article  CAS  Google Scholar 

  25. Freundlich HMF (1906) J Phys Chem 57:385–470

    CAS  Google Scholar 

  26. Koble RA, Corrigan TE (1952) Ind Eng Chem 44:383

    Article  CAS  Google Scholar 

  27. Dubinin MM (1960) Chem Rev 60:235

    Article  CAS  Google Scholar 

  28. Hasany SM, Chaudhary MH (1996) Appl Radiat Isot 47:467

    Article  CAS  Google Scholar 

  29. Mahramanlioglu M, Bicer IO, Misirli T, Kilislioglu A (2007) J Radioanal Nucl Chem 273:621

    Article  CAS  Google Scholar 

  30. Chowdhury S, Mishra R, Saha P, Kushwaha P (2011) Desalination 265:159

    Article  CAS  Google Scholar 

  31. Ho YS, Ng JCY, McKay G (2000) Sep Purif Methods 29:189

    Article  CAS  Google Scholar 

  32. Cheung CW, Porter JF, Mckay G (2000) Sep Purifi Technol 19:55

    Article  CAS  Google Scholar 

  33. Weber WJ Jr, Morris JC (1963) Am Soc Civil Eng 89:31

    Google Scholar 

  34. Srivastava VC, Swamy MM, Mall ID, Prasad B, Mishra IM (2006) Colloid Surf A 272:89

    Article  CAS  Google Scholar 

  35. Dogan M, Ozdemir Y, Alkan M (2007) Dyes Pig 75:701

    Article  CAS  Google Scholar 

  36. Singh KK, Rastogi R, Hasan SH (2005) J Colloid Interface Sci 290:61

    Article  CAS  Google Scholar 

  37. Aksu Z, Gonen F (2004) Process Biochem 39:599

    Article  CAS  Google Scholar 

  38. Gokhale SV, Jyoti KK, Lele SS (2009) J Hazard Mater 170:735

    Article  CAS  Google Scholar 

  39. Vijayaraghavan K, Jegan J, Palanivelu K, Velan M (2004) J Hazard Mater 113:223

    Article  CAS  Google Scholar 

  40. Thomas HC (1944) J Am Chem Soc 66:1664

    Article  CAS  Google Scholar 

  41. Vijayaraghavan K, Prabu D (2006) J Hazard Mater 137:558

    Article  CAS  Google Scholar 

  42. Yan G, Viraraghavan T, Chen M (2001) Adsorpt Sci Technol 19:25

    Article  CAS  Google Scholar 

  43. Lodeiro P, Herrero R, Sastre de Vicente ME (2006) J Hazard Mater 137:244

    Article  CAS  Google Scholar 

  44. Goel J, Kadirvelu K, Rajagopal C, Garg VK (2005) J Hazard Mater 125:211

    Article  CAS  Google Scholar 

Download references

Acknowlegments

This study was supported by the Education Department of Henan Province in China (No. 2010A610003) and Henan Science and Technology Department in China (No. 102102210103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, W., Zhao, L. Removal of uranium(VI) from aqueous solution using citric acid modified pine sawdust: batch and column studies. J Radioanal Nucl Chem 292, 585–595 (2012). https://doi.org/10.1007/s10967-011-1452-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1452-9

Keywords

Navigation