Skip to main content
Log in

A high efficient sorption of U(VI) from aqueous solution using amino-functionalized SBA-15

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Uranium is one of the most hazardous heavy metal due to its long half-life radioactivity, high toxicity and mobility as aqueous uranyl ion (UO2 2+) under ordinary environmental conditions. Herein, amino functionalized SBA-15 (APSS) was developed as a rapid and efficient sorbent for removal of U(VI) from the environment. The APSS sample was synthesized by grafting method and was characterized by SEM, NMR, SAXS, and N2 sorption/desorption isothermal experiments. The sorption of U(VI) by APSS was investigated under different conditions of pH, contact time, initial U(VI) concentration, ionic strength and solid–liquid ratio. The results show that the sorption of U(VI) by APSS is strongly dependent on pH but independent of ionic strength and solid–liquid ratios (m/V). The sorption is ultrafast with an equilibrium time of less than 30 min, and the sorption capacity is as large as 409 mg/g at pH 5.3 ± 0.1. Besides, the U(VI) sorption by APSS from extremely diluted solution and the desorption of U(VI) from APSS were also studied. It is found that 100 mg of APSS can almost completely remove the U(VI) ions from 4 L aqueous solution with the U(VI) concentration as low as 4.2 ppb and the sorbed U(VI) can be completely desorbed by 0.1 mol/L nitric acid. The results strongly reveal the high performance of the APSS material in the removal and preconcentration of U(VI) from the aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sprynskyy M, Kovalchuk I, Buszewski B (2010) J Hazard Mater 181:700–707

    Article  CAS  Google Scholar 

  2. Domingo JL (2001) Toxicol 15:603–609

    CAS  Google Scholar 

  3. Thiebault C, Carriere M, Milgram S, Simon A, Avoscan L, Gouget B (2007) Toxicol Sci 98:479–487

    Article  CAS  Google Scholar 

  4. Majdan M, Pikus S, Gajowiak A, Sternik D, Zieba E (2010) J Hazard Mater 184:662–670

    Article  CAS  Google Scholar 

  5. Ghasemi M, Keshtkar AR, Dabbagh R, Safdari SJ (2011) J Hazard Mater 189:141–149

    Article  CAS  Google Scholar 

  6. Pang C, Liu YH, Cao XH, Hua R, Wang CX, Li CQ (2010) J Radioanal Nucl Chem 286:185–193

    Article  CAS  Google Scholar 

  7. Humelnicu D, Dinu MV, Dragan ES (2011) J Hazard Mater 185:447–455

    Article  CAS  Google Scholar 

  8. Venkatesan KA, Sukumaran V, Antony MP, Vasudeva Rao PR (2004) J Radioanal Nucl Chem 3:443–450

    Article  Google Scholar 

  9. Cyriac B, Balaji BK (2010) Microchim Acta 171:33–40

    Article  CAS  Google Scholar 

  10. Preetha CR, Gladis JM, Rao TP, Venkateswaran G (2006) Environ Sci Technol 40:3070–3074

    Article  CAS  Google Scholar 

  11. Gladis JM, Rao TR (2004) Microchim Acta 146:251–258

    Article  CAS  Google Scholar 

  12. Milja TE, Prathish KP, Rao TP (2011) J Hazard Mater 188:384–390

    Article  CAS  Google Scholar 

  13. Pandey AK, Das S, Athawale AA, Subramanian M, Seshagiri TK, Khanna PK, Manchanda VK (2011) J Hazard Mater 186:2051–2059

    Article  Google Scholar 

  14. Majdan M, Pikus S, Gajowiak A, Gladysz-Plaska A, Krzyzanowska H, Zuk J, Bujacka M (2010) Appl Surf Sci 256:5416–5424

    Article  CAS  Google Scholar 

  15. Lee JF, Thirumavalavan M, Wang YT, Lin LC (2011) J Phys Chem C 115:8165–8717

    Article  Google Scholar 

  16. Kalin M, Wheeler WN, Meinrath G (2005) J Environ Radioactiv 78:151–177

    Article  CAS  Google Scholar 

  17. Benhamou A, Baudu M, Derriche Z, Basly JP (2009) J Hazard Mater 171:1001–1008

    Article  CAS  Google Scholar 

  18. Du XZ, Liu JS (2011) J Mater Chem 21:6981–6987

    Article  Google Scholar 

  19. Vidya K, Dapurkar SE, Selvam R, Badamali SK, Gupta NM (2001) Microporous Mesoporous Mater 50:173–179

    Article  CAS  Google Scholar 

  20. Vidya K, Dapurkar SE, Selvam R, Badamali SK, Kumar D, Gupta NM (2003) J Mol Catal A Chem 191:149

    Article  CAS  Google Scholar 

  21. Yousefi SR, Ahmadi SJ, Shemirani F, Jamali MR, Salavati-Niasari M (2009) Talanta 80:212–217

    Article  CAS  Google Scholar 

  22. Nogami M, Ishihara T, Suzuki K, Ikeda Y (2007) J Radioanal Nucl Chem 273:37–41

    Article  CAS  Google Scholar 

  23. Nogami M, Sugiyamam Y, Ikeda Y (2010) J Radioanal Nucl Chem 284:195–199

    Article  CAS  Google Scholar 

  24. Nogami M, Sugiyama Y, Kawasaki T, Harada M, Morita Y, Kikuchi T, Ikeda Y (2010) J Radioanal Nucl Chem 283:541–546

    Article  CAS  Google Scholar 

  25. Yan YS, Liu Y, Liu ZC, Gao J, Dai JD, Han JA, Wang Y, Xie JM (2011) J Hazard Mater 186:197–205

    Article  Google Scholar 

  26. Degirmenci V, Uner D, Cinlar B, Shanks BH, Yilmaz A, Santen RA, Hensen EJM (2011) Catal Lett 141:33–42

    Article  CAS  Google Scholar 

  27. Bruzzoniti MC, Prelle A, Sarzanini C, Onida B, Fiorilli S, Garrone E (2007) J Sep Sci 30:2414–2420

    Article  CAS  Google Scholar 

  28. Sayari A, Da’na E, Silva ND (2011) Chem Eng J 166:454–459

    Article  Google Scholar 

  29. Park SE, Jeong EY, Ansari MB, Mo YH (2011) J Hazard Mater 185:1311–1317

    Article  Google Scholar 

  30. Hulea V, Mureseanu M, Reiss A, Cioatera N, Trandafir I (2010) J Hazard Mater 182:197–203

    Article  Google Scholar 

  31. Zhao DY, Huo QS, Feng JL, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–6036

    Article  CAS  Google Scholar 

  32. Hattori T, Saito T, Ishida K, Scheinost AC, Tsuneda T, Nagasaki S, Tanaka S (2009) Cosmochim Acta 73:5975–5988

    Article  CAS  Google Scholar 

  33. Wang XK, Shao DD, Jiang ZQ, Li JX, Meng YD (2009) J Phys Chem B 113:860–864

    Article  Google Scholar 

  34. Borah D, Satokawa S, Kato S, Kojima T (2009) J Hazard Mater 162:1269–1277

    Article  CAS  Google Scholar 

  35. Yuan LY, Liu YL, Shi WQ, Lv YL, Lan JH, Zhao YL, Chai ZF (2011) Dalton T 40:7446–7453

    Article  CAS  Google Scholar 

  36. Unlu N, Ersoz M (2006) J Hazard Mater 136:272–280

    Article  Google Scholar 

  37. Ho YS (2006) J Hazard Mater 136:681–689

    Article  CAS  Google Scholar 

  38. Ding P, Huang KL, Li GY, Zeng WW (2007) J Hazard Mater 146:58–64

    Article  CAS  Google Scholar 

  39. Langmuir I (1918) J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  40. Li SJ, Tian G, Geng JX, Jin YD, Wang CL, Li SQ, Chen Z, Wang H, Zhao YS (2011) J Hazard Mater 190:442–450

    Article  Google Scholar 

  41. Hall KR, Eagleton LC, Acrivos A, Vermeule T (1996) Ind Eng Chem Fundam 5:212

    Article  Google Scholar 

  42. Singer DM, Maher K, Brown GE (2009) Geochim Cosmochim Acta 73:5989–6007

    Article  CAS  Google Scholar 

  43. Weber JJ, Morris JC (1963) J Sanitary Eng Div Proceed Am Soc Civ Eng 89:31–59

    Google Scholar 

Download references

Acknowledgments

The authors thank the staff of Beijing Synchrotron Radiation Facility (BSRF) and Shanghai Synchrotron Radiation Facility (SSRF) for the assistance during the SAXS measurement. This work was supported by the National Natural Science Foundation of China (Grant No. 91026007) and the “Strategic Priority Research program” of the Chinese Academy of Sciences (Grant No. XDA03010401 and No. XDA03010403).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yali Yuan or Weiqun Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Yuan, L., Yuan, Y. et al. A high efficient sorption of U(VI) from aqueous solution using amino-functionalized SBA-15. J Radioanal Nucl Chem 292, 803–810 (2012). https://doi.org/10.1007/s10967-011-1515-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1515-y

Keywords

Navigation