Skip to main content
Log in

Sorptive removal of cobalt, strontium and cesium onto manganese and iron oxide-coated montmorillonite from groundwater

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Applicability of montmorillonite, manganese oxide-coated montmorillonite (MOCM) and iron oxide-coated montmorillonite (IOCM) as backfill materials in permeable reactive barrier (PRB) to remediate contaminated groundwater was investigated. Single- and bi-solute competitive sorptions of Co, Sr and Cs were conducted. The Freundlich, Langmuir and Dubinin-Radushkevich models fitted the single-solute sorption data well (R 2 > 0.95). Maximum sorption capacities (q mL) of Co and Sr predicted by the Langmuir model were in the order of MOCM (0.37 mmol/g for Co and 0.28 mmol/g for Sr) > montmorillonite (0.27 mmol/g for Co and 0.19 mmol/g for Sr) ≈ IOCM (0.23 mmol/g for Co and 0.21 mmol/g for Sr), while those of Cs were in the order of montmorillonite (1.11 mmol/g) > MOCM (0.68 mmol/g) > IOCM (0.62 mmol/g). In the bi-solute sorptions, the sorbed amount of one solute decreased due to the presence of the other competing metal ion. Langmuir model parameters for single-solute (q mL and b L) and bi-solute (\( q_{\text{mL}}^{*} \) and \( b_{\text{L}}^{ *} \)) sorptions were compared to analyze the effect of competition between the metal ions. The competitive Langmuir (R 2 > 0.81) and P-factor (R 2 > 0.82) models predicted the bi-solute competitive sorption data well but not the SRS model (0.003 < R 2 < 0.97).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

b L :

Langmuir model constant (L/mmol)

b L,i :

Langmuir model constant of a solute i in single-solute sorption (L/mmol)

\( b_{{{\text{L,}}i}}^{*} \) :

Langmuir model constant of a solute i in bi-solute competitive sorption (L/mmol)

C:

Aqueous-phase equilibrium concentration (mmol/L)

C 0 :

Initial concentration (mmol/L) of metal in aqueous solution

C m,i :

Aqueous-phase equilibrium concentration (mmol/L) of a solute i in bi-solute competitive sorption

CLM:

Competitive Langmuir model

E :

Mean free energy (kJ/mol) in Dubinin-Radushkevich model

K F :

Freundlich sorption coefficient \( [{\text{(mmol/g)/(mmol/L)}}^{N_{F}}] \).

K F,i :

Freundlich sorption parameters obtained from a single-solute system \( [{\text{(mmol/g)/(mmol/L)}}^{N_{F}}] \)

N d :

The number of data points

N F :

Exponent in Freundlich model

N F,i :

Exponent in Freundlich model obtained from a single-solute system

P :

The number of parameters

P i :

P-factor model parameter

q :

Solid-phase equilibrium concentration (mmol/g)

q i,exp :

Solid-phase equilibrium concentration of the experimental data (mmol/g)

q i,pred :

Solid-phase equilibrium concentration of theoretically predicted points (mmol/g)

q m,i :

Solid-phase equilibrium concentration of a solute i in bi-solute competitive sorption (mmol/g)

q mD :

Maximum sorption capacity of Dubinin-Radushkevich model (mmol/g)

q mL :

Maximum sorption capacity of Langmuir model (mmol/g)

q mL,i :

Maximum sorption capacity of solute i in single-solute sorption predicted by Langmuir model (mmol/g)

\( q_{{{\text{mL,}}i}}^{*} \) :

Maximum sorption capacity of solute i in bi-solute competitive sorption predicted by Langmuir model (mmol/g)

R :

Gas constant, 8.314 (J/mol/K)

R 2 :

Coefficient of determination

R L :

Separation factor

RMSE:

Root mean square error

rss:

Residual sum of squares

SSE:

Sum of squared errors

T :

Absolute temperature (K)

α :

SRS model coefficient

α i,j :

Dimensionless competition coefficient for the sorption of solute i in the presence of solute j predicted by SRS model

β:

Dubinin-Radushkevich model parameter (mol2/J2)

ε :

Polanyi potential (J/mol)

References

  1. Ragnarsdottir KV, Fournier P, Oelkers EH, Harrichoury JC (2001) Geochim Cosmochim Acta 65:3955–3964

    Article  CAS  Google Scholar 

  2. Abalkina IL, Sarkisov AA, Linge II, Kazakov SV, Panchenko SV, Savelieva EA (2008) Appl Radiat Isot 66:1554–1557

    Article  CAS  Google Scholar 

  3. El-Kamash AM (2008) J Hazard Mater 151:432–445

    Article  CAS  Google Scholar 

  4. Bowyer TW, Biegalski SR, Cooper M, Eslinger PW, Haas D, Hayes JC, Miley HS, Strom DJ (2011) J Environ Radioact 102:681–687

    Article  CAS  Google Scholar 

  5. World Health Organization (2006) WHO, Gevana, Switzerland

  6. Yoon YY, Cho SY, Lee KY, Kim Y (2006) J Korean Assoc Radiat Prot 31:25–30

    CAS  Google Scholar 

  7. Conca JL, Wright J (2006) Appl Geochem 21:1288–1300

    Article  CAS  Google Scholar 

  8. Noubactep C (2006) J Radioanal Nucl Chem 267:13–19

    Article  CAS  Google Scholar 

  9. Noubactep C, Schöner A, Dienemann H, Sauter M (2006) J Radioanal Nucl Chem 267:21–27

    Article  CAS  Google Scholar 

  10. Riebe B, Dultz S, Bunnenberg C (2005) Appl Clay Sci 28:9–16

    Article  CAS  Google Scholar 

  11. Karamanis DT, Aslanoglou XA, Assimakopoulos PA, Gangas NH (1999) J Radioanal Nucl Chem 242:3–9

    Article  CAS  Google Scholar 

  12. Al-Degs Y, Khraisheh MAM, Tutunji MF (2001) Water Res 35:3724–3728

    Article  CAS  Google Scholar 

  13. Oliveria LCA, Rios RVRA, Fabris JD, Sapag K, Garg VK, Lago RM (2003) Appl Clay Sci 22:169–177

    Article  Google Scholar 

  14. Vicente MA, Lambert JF (2010) Phys Chem Chem Phys 3:4843–4852

    Article  Google Scholar 

  15. Simon FG, Segebade C, Hedrich M (2003) Sci Total Environ 207:231–238

    Article  Google Scholar 

  16. Versada J, Hradil D, Řanda Z, Jelínek E, Štulík K (2005) Appl Clay Sci 30:53–66

    Article  Google Scholar 

  17. Khraisheh MAM, Al-degs YS, Mcminn WAM (2004) Chem Eng J 99:177–184

    Article  CAS  Google Scholar 

  18. USEPA (2003) US EPA Method 9081, SW-846, Office of Solid Waste. Washington, DC

    Google Scholar 

  19. Ma B, Oh S, Shin WS, Choi SJ (2011) Desalination 276:336–346

    Article  CAS  Google Scholar 

  20. Wolff-Boenisch D, Traina SJ (2006) Geochim Cosmochim Acta 70:4356–4366

    Article  CAS  Google Scholar 

  21. Kundu S, Gupta AK (2006) Chem Eng J 122:93–106

    Article  CAS  Google Scholar 

  22. Sheindorf C, Rebhun M, Sheintuch M (1881) J Colloid Interf Sci 79:136–142

    Article  Google Scholar 

  23. Srivastava VC, Mall ID, Mishra IM (2006) Chem Eng J 117:79–91

    Article  CAS  Google Scholar 

  24. Valderrama C, Barios JI, Rarran A, Cortina JL (2010) Water Air Soil Pollut 210:421–434

    Article  CAS  Google Scholar 

  25. Choy KKH, Proter JF, Mckay G (2000) J Chem Eng Data 45:575–584

    Article  CAS  Google Scholar 

  26. Yu S, Ren A, Cheng J, Song XP, Chen C, Wang X (2007) J Radioanal Nucl Chem 273:129–133

    Article  CAS  Google Scholar 

  27. Boonfueng T, Axe L, Xu T (2005) J Colloid Interf Sci 281:80–92

    Article  CAS  Google Scholar 

  28. Ijagbemi CO, Baek MH, Kim DS (2009) J Hazard Mater 166:538–546

    Article  CAS  Google Scholar 

  29. Nachtegaal M, Sparks DL (2004) J Colloid Interf Sci 276:13–23

    Article  CAS  Google Scholar 

  30. Changtawong V, Harvey NW, Bashkin VN (2003) Water Air Soil Pollut 148:111–125

    Article  Google Scholar 

  31. Bhattacharyya KG, Gupta SS (2007) J Colloid Interf Sci 310:411–424

    Article  CAS  Google Scholar 

  32. Wen T, Chen Y, Cai L (2011) J Radioanal Nucl Chem 290:437–446

    Article  CAS  Google Scholar 

  33. Galamboš M, Paučová V, Kufčáková J, Rosskopfová O, Rajec P, Adamcová R (2010) J Radioanal Nucl Chem 284:55–64

    Article  Google Scholar 

  34. Ararem A, Bouras O, Arbaoui F (2011) Chem Eng J 172:230–236

    Article  CAS  Google Scholar 

  35. McKay G, Blair HS, Gardner JR (1982) J Appl Polym Sci 27:3040–3057

    Google Scholar 

  36. Başçetin E, Atun G (2006) Appl Radiat Isot 64:957–964

    Article  Google Scholar 

  37. Zhang SQ, Hou WG (2008) Colloid Surface A: Physicochem Eng Aspects 320:92–97

    Article  CAS  Google Scholar 

  38. Bhattacharyya KG, Gupta SS (2008) Adv Colloid Interf Sci 140:114–131

    Article  CAS  Google Scholar 

  39. Kanungo SB, Tripathy SS, Rajeev (2004) J Colloid Interf Sci 269:1–10

    Article  CAS  Google Scholar 

  40. Gutierrez M, Ruentes HR (1996) Appl Clay Sci 11:11–24

    Article  CAS  Google Scholar 

  41. Chirkst DE, Cheremisina OV, Ivanov MV, Chistyakov AA, Zhadovskii IT (2006) Russian J Appl Chem 79:367–371

    Article  CAS  Google Scholar 

  42. Nightingale ER (1959) J Phys Chem 63:1381–1387

    Article  CAS  Google Scholar 

  43. Wu J, Li B, Liao J, Feng Y, Zhang D, Zhao J, Wen W, Yang Y, Liu N (2009) J Environ Radioact 100:914–920

    Article  CAS  Google Scholar 

  44. Iijima K, Tomura T, Shoji Y (2010) Appl Clay Sci 49:262–268

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government, the Ministry of Education, Science and Technology (grant number: M20709005401-07B0900-40110) and the authors acknowledge the Korea Basic Science Institute (Daegu) and Kyungpook National University Center for Scientific Instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Sik Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, Y., Shin, W.S. & Choi, SJ. Sorptive removal of cobalt, strontium and cesium onto manganese and iron oxide-coated montmorillonite from groundwater. J Radioanal Nucl Chem 292, 837–852 (2012). https://doi.org/10.1007/s10967-011-1527-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1527-7

Keywords

Navigation