Skip to main content
Log in

Effect of gamma-irradiation on adsorption properties of Slovak bentonites

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

One of the basic prerequisites for the use of bentonite as engineering barrier in deep geological repositories for radioactive waste and spent nuclear fuel is their stability against ionizing radiation stemming from radionuclides present in radioactive waste and spent nuclear fuel. The aim of this study was to compare the changes in the adsorption properties of selected Slovak bentonites in relation to uranium fission products (137Cs and 90Sr), prior to and after irradiation of bentonites with a 60Co γ-source and specifying the changes in the structure of Slovak bentonites induced by γ-radiation. The changes in irradiated natural forms of Slovak bentonites and the changes in their natrified analogues and fractions with different grain sizes were studied from five Slovak deposits: Jelšový potok, Kopernica, Lastovce, Lieskovec and Dolná Ves. The EPR spectra of bentonites from deposits Jelšový potok and Lieskovec with absorbed doses of 104 and 105 Gy γ-rays showed no changes in the structure of the studied Slovak bentonites. The changes, which in terms of structure destabilization can be considered insignificant, occurred only in bentonites with absorbed doses of γ-radiation as much as 1 MGy. The absorbed dose of 1 MGy γ-radiation did not have an effect on the adsorption of cesium on every studied bentonite. Changes that can also be regarded as insignificant occurred only during strontium adsorption, especially on Fe–bentonite from deposit Lieskovec and Ca–Mg–bentonite from deposit Jelšový potok, when an increase in the adsorption capacity occurred. Attention should be paid in further research of this topic which would require carrying out experiments on bentonite samples with absorbed doses higher by several orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jesenák K (2002) Environmentálna anorganická chémia. PriF UK, Nadácia Jana Husa, Bratislava

  2. Jablonská K, Štyriaková I (2007) Application possibility of bentonite and zeolite in bioremediation. Adv Mater Res 20–21:295–298

    Article  Google Scholar 

  3. Chmielewská E (2008) Development of new generation of environmental adsorbents based on natural nanomaterials. Chem Listy 102(2):124–130

    Google Scholar 

  4. Hrachová J, Billik P, Fajnor VŠ (2010) Influence of organic surfactants on structural stability of mechanochemically treated bentonite. J Therm Anal Colorim 101(1):161–168

    Article  Google Scholar 

  5. Orolínová Z, Mockovčiaková A, Feldhoff A, Menzel D (2010) Influence of amount of iron oxide and temperature of synthesis on their particle size in composites with bentonite. Diffus Fundam 12:80–81

    Google Scholar 

  6. Čipáková A, Hiller E, Lichner Ľ (2011) Interaction and fractionation of added cadmium in some typical soils of the Danubian Lowland. J Radioanal Nucl Chem 287(1):157–165

    Article  Google Scholar 

  7. Adamcová R, Haasová Z (2005) Vybrané fyzikálne vlastnosti bentonitu pre úložisko rádioaktívneho odpadu. Miner Slovaca 37(3):387–389

    Google Scholar 

  8. Chmielewská E, Kuruc J (2008) Odpady. Nakladanie s tuhým neaktívnym a rádioaktívnym odpadom. Univerzita Komenského, Bratislava

    Google Scholar 

  9. Adamcová R, Frankovská J, Drmeková T (2009) Engineering geological clay research for a radioactive waste repository in Slovakia. Acta Geol Slovaca 1(2):71–82

    Google Scholar 

  10. Galamboš M, Rosskopfová O, Kufčáková J, Rajec P (2011) Utilization of Slovak bentonites in deposition of high-level radioactive waste and spent nuclear fuel. J Radioanal Nucl Chem 288(3):765–777

    Article  Google Scholar 

  11. Weber WJ, Ewing RC, Catlow CRA, Diaz de la Rubia T, Hobbs LW, Kinoshita C, Matzke H, Motta AT, Nastazi M, Salje EHK, Vance ER, Zinkle SJ (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J Mater Res 13(6):1434–1484

    Article  CAS  Google Scholar 

  12. Andrejkovičová S, Madejová J, Czímerová A, Galko I, Dohrmann R, Komadel P (2006) Mineralogy and chemistry of Fe-rich bentonite from the Lieskovec deposit (Central Slovakia). Geol Carphatica 57(5):371–378

    Google Scholar 

  13. Jesenák K, Vargová M, Bakošová B (2006) Hydraulický odpor jemných frakcií bentonitu Stará Kremnička—Jelšový potok priemyselných a environmentálnych aplikácií fylosilikátov. Partikulárne látky vo vede, priemysle a v životnom prostredí, Košice, pp 96–101

  14. Andráš P, Nagyová I, Melichová Z (2008) Separácia a identifikácia ílových minerálov z haldových polí ložiska Ľubietová pre účely štúdia ich sorpčných vlastností. Chem Listy 102(8):684

    Google Scholar 

  15. Melichová Z, Hromada L, Brtáňová A (2010) Štúdium sorpčných vlastností bentonitu z ložiska Lieskovec. Acta Universitatis Matthiae Belli Ser Chem 12:15–23

    Google Scholar 

  16. Osacký M, Šucha V, Czímerová J, Madejová J (2010) Reaction of smectites with iron in a nitrogen atmosphere at 75°C. Appl Clay Sci 50(2):237–244

    Article  Google Scholar 

  17. Frankovská J, Andrejkovičová S, Janotka I (2010) Effect of NaCl on hydraulic properties of bentonite and bentonite-palygorskite mixture. Geosynth Int 17(4):250–259

    Article  Google Scholar 

  18. Kolaříková I, Švandová J, Přikryl R, Vinšová H, Jedináková-Křižová V, Zeman J (2010) Mineralogical changes in bentonite barrier within Mock-Up-CZ experiment. Appl Clay Sci 47(1–2):10–15

    Article  Google Scholar 

  19. Lee JO, Kang IM, Cho WJ (2010) Smectite alteration and its influence on the barrier properties of smectite clay for a repository. Appl Clay Sci 47(1–2):99–104

    Article  CAS  Google Scholar 

  20. Ouhadi VR, Yong RN, Goodarzi AR, Safari-Zanjani M (2010) Effect of temperature on the re-structuring of the microstructure and geo-environmental behaviour of smectite. Appl Clay Sci 47(1–2):2–9

    Article  CAS  Google Scholar 

  21. Palágyi Š, Štamberg K, Vidčková H (2010) Transport and sorption of 85Sr and 125I in crushed crystalline rocks under dynamic flow conditions. J Radioanal Nucl Chem 283(3):629–636

    Article  Google Scholar 

  22. Valderrama C, Giménez J, de Pablo J, Martínez M (2011) Transport of strontium through a Ca-bentonite (Almería, Spain) and comparison with MX-80 Na-bentonite: experimental and modelling. Water Air Soil Pollut 214(1–4):1–8

    Google Scholar 

  23. Khan SA (2003) Sorption of the long-lived radionuclides cesium-134, strontium-85 and cobalt-60 on bentonite. J Radioanal Nucl Chem 258(1):3–6

    Article  CAS  Google Scholar 

  24. Vejsada J, Vokál A, Vopálka D, Filipská H (2006) Study of cesium sorption on Na and Ca-Mg bentonites using batch and diffusion experiments. Czechoslovak J Phys 56(4):D73–D79

    Article  CAS  Google Scholar 

  25. Andrejkovičová S, Rocha F, Janotka I, Komadel P (2008) An investigation into the use of blends of two bentonites for geosynthetic clay liners. Geotext Geomembr 26:436–445

    Article  Google Scholar 

  26. Mockovčiaková A, Orolínová Z (2009) Adsorption properties of modified bentonite clay. Chem Technol 1(50):47–50

    Google Scholar 

  27. Andrejkovičová S, Pentrák M, Jankovič Ľ, Komadel P (2010) Sorption of heavy metal cations on rhyolitic and andesitic bentonites from Central Slovakia. Geol Carpathica 61(2):163–171

    Article  Google Scholar 

  28. Park Y, Shin WS, Choi S-J (in press) Sorptive removal of cobalt, strontium and cesium onto manganese and iron oxide-coated montmorillonite from groundwater. J Radioanal Nucl Chem doi:10.1007/s10967-011-1527-7

  29. Vrtoch Ľ, Pipíška M, Horník M, Augustín J, Lesný J (2011) Sorption of cesium from water solutions on potassium nickel hexacyanoferrate-modified Agaricus bisporus mushroom biomass. J Radioanal Nucl Chem 287(3):853–862

    Article  CAS  Google Scholar 

  30. Deepthi Rani R, Sasidhar P (in press) Geochemical and thermodynamic aspects of sorption of strontium on kaolinite dominated clay samples at Kalpakkam. Environ Earth Sci. doi:10.1007/s12665-011-1374-4

  31. Selvakumar R, Aravindh S, Kaushik CP, Katarani VG, Thorat VS, Gireesan P, Jayavignesh V, Swaminathan K, Raj K (2011) Screening of silver nanoparticles containing carbonized yeast cells for adsorption of few long-lived active radionuclides. J Radioanal Nucl Chem 288:629–633

    Article  CAS  Google Scholar 

  32. Jedináková-Křížová V, Zeman J, Vinšová H, Hanslík E (2010) Bentonite stability, speciation and migration behaviour of some critical radionuclides. J Radioanal Nucl Chem 286:719–727

    Article  Google Scholar 

  33. Tolgyessy J, Harangozó M (2000) Radioekologia. UMB, Banská Bystrica

    Google Scholar 

  34. Vejsada J, Hradil D, Řanda Z, Jelínek E, Štulík K (2005) Adsorption of cesium on Czech smectite-rich clays—a comparative study. Appl Clay Sci 30(1):53–66

    Article  CAS  Google Scholar 

  35. Melichová Z, Hromada L, Nagyová I (2010) Štúdium sorpcie olova na prírodný neupravovaný bentonit z ložiska Lieskovec. Anorganická chémia v treťom tisícročí: seminár venovaný 45. výročiu výučby a výskumu na KACH PF UPJŠ, pp 40–41

  36. Mockovčiaková A, Orolínová Z, Škvarla J (2010) Enhancement of the bentonite properties. J Hazard Mater 180:274–281

    Article  Google Scholar 

  37. Bromberg L, Straut CM, Centrone A, Wilusz E, Hatton TA (2011) Montmorillonite functionalized with pralidoxime as a material for chemical protection against organophosphorous compounds. ACS Appl Mater Interfaces 3(5):1479–1484

    Article  CAS  Google Scholar 

  38. Butkus D, Kleiza J (2011) Adsorption of 85Kr radioactive inert gas into hardening mixtures. J Radioanal Nucl Chem 287(1):247–254

    Article  CAS  Google Scholar 

  39. Yıldız B, Erten HN, Kış M (2011) The sorption behavior of Cs+ ion on clay minerals and zeolite in radioactive waste management: sorption kinetics and thermodynamics. J Radioanal Nucl Chem 288(2):475–483

    Article  Google Scholar 

  40. Uğur FA, Şeref T (2011) Experimental investigation of radiocesium sorption on ceramic clay using a batch method. J Radioanal Nucl Chem 288:347–350

    Article  Google Scholar 

  41. Orolínová Z, Mockovčiaková A, Zeleňák V, Myndyk M (2012) Influence of heat treatment on phase transformation of cla-iron oxide composite. J Alloys Compd 511(1):63–69

    Article  Google Scholar 

  42. Brtáňová A, Melichová Z, Komadel P (in press) Sorption of Cu2+ from aqueous solution by Slovak bentonites. Ceram Silik

  43. Meunier A, Velde B, Griffault L (1998) The reactivity of bentonites: a review. An application to clay barrier stability for nuclear waste storage. Clay Miner 33:187–196

    Article  CAS  Google Scholar 

  44. Přikryl R, Ryndová T, Boháč J, Weishauptová Z (2003) Microstructures and physical properties of “backfill” clays: comparison of residual and sedimentary montmorillonite clays. Appl Clay Sci 23(1–4):149–156

    Article  Google Scholar 

  45. Pacovský J, Svoboda J, Zapletal L (2007) Saturation development in the bentonite barrier of the Mock-Up-CZ geotechnical experiment. Phys Chem Earth 32:116–122

    Article  Google Scholar 

  46. Vereš J, Orolínová Z (2009) Study of the treated and magnetically modified bentonite as possible sorbents of heavy metals. Acta Montanistica Slovaca 14(2):152–155

    Google Scholar 

  47. Stríček I, Šucha V, Uhlík P, Madejová J, Galko I (2009) Mineral stability of Fe-rich bentonite in the Mock-Up-CZ experiment. Geologica Carpathica 60(5):431–436

    Article  Google Scholar 

  48. Osacký M, Honty M, Madejová J, Bakas T, Šucha V (2009) Experimental interactions of Slovak bentonites with metallic iron. Geologica Carpathica 60(6):535–543

    Article  Google Scholar 

  49. Urik M, Littera P, Ševc J, Koleník M, Černanský S (2009) Removal of arsenic (V) from aqueous solutions using chemically modified sawdust of spruce (Picea abies): kinetics and isotherm studies. Int J Environ Sci Technol 6(3):451–456

    CAS  Google Scholar 

  50. Tel H, Altas Y, Eral M, Sert S, Cetinkaya B, Ínan S (2010) Preparation of ZrO2 and ZrO2–TiO2 microspheres by the sol–gel method and an experimental design approach to their strontium adsorption behaviours. Chem Eng J 161:151–160

    Article  CAS  Google Scholar 

  51. Yaron B, Dror I, Berkowitz B (2010) Contaminant geochemistry—a new perspective. Naturwissenschaften 97(1):1–17

    Article  CAS  Google Scholar 

  52. Bear JJ, Cheng HDA (2010) Modeling contaminant transport. Theory Appl Transp Porous Media 1(23):341–523

    Google Scholar 

  53. Ye WM, Chen YG, Chen B, Wang Q, Wang J (2010) Advances on the knowledge of the buffer/backfill properties of heavily-compacted GMZ bentonite. Eng Geol 116(1–2):12–20

    Article  Google Scholar 

  54. Přikryl R, Weishauptová Z (2010) Hierarchical porosity of bentonite-based buffer and its modification due to increased temperature and hydration. Appl Clay Sci 47(1–2):163–170

    Article  Google Scholar 

  55. Vokál A, Vopálka D, Večerník P (2010) An approach for acquiring data for description of diffusion in safety assessment of radioactive waste repositories. J Radioanal Nucl Chem 286(3):751–757

    Article  Google Scholar 

  56. Kawano M, Tomita K (1991) Dehydration and rehydration of saponite and vermiculite. Clays Clay Miner 39(2):174–183

    Article  CAS  Google Scholar 

  57. Gournis D, Mantaka-Marketou AE, Karakassides MA, Petridis D (2000) Effect of g-irradiation on clays and organoclays: a Mössbauer and XRD study. Phys Chem Miner 27:514–521

    Article  CAS  Google Scholar 

  58. Stríček I, Šucha V, Uhlík P (2008) Gamma-irradiation effects on smectite properties. 4. Mid-European clay conference, Zakopane, Poland, Abstracts, Mineralogia—Special papers, vol 33. P. 157

  59. Stríček I (2010) Mineral stability of bentonites in barrier conditions. Dissertation thesis. Comenius University in Bratislava. Faculty of Natural Sciences. Department of Geology of Mineral Deposits

  60. Reed DT, Scott DD, Weiner MF (1987) Gamma and alpha radiation levels in a basalt high-level waste repository: potential impact on container corrosion and packing properties. In: Tsang C (ed) Coupled processes associated with nuclear waste repositories. Academic Press, Orlando, pp 325–338

    Google Scholar 

  61. Pusch R, Karnland O (1996) Physico/chemical stability of smectite clays. Eng Geol 41(1–4):73–85

    Article  Google Scholar 

  62. Pushkareva RA, Litovchenko AS, Plastinina MA, Pushkarev AV, Kalinichenko EA (1999) Infrared spectroscopic study of γ-radiation-induced hydrogen isotope exchange in clay minerals. Radiochemistry 41(6):599–603

    CAS  Google Scholar 

  63. Pushkareva R, Kalinichenko E, Lytovchenko A, Pushkarev A, Kadochnikov V, Plastynina M (2002) Irradiation effect on physico-chemical properties of clay minerals. Appl Clay Sci 21:117–123

    Article  CAS  Google Scholar 

  64. Negron A, Ramos S, Blumenfeld AL, Pacheco G, Fripiat JJ (2002) On the structural stability of montmorillonite submitted to heavy γ-irradiation. Clays Clay Miner 50:35–37

    Article  CAS  Google Scholar 

  65. Plötze M, Kahr G, Hermanns SR (2003) Alteration of clay minerals—gammairradiation effects on physicochemical properties. Appl Clay Sci 23:195–202

    Article  Google Scholar 

  66. Dran J-C (1992) Radiation effects in radioactive waste storage materials. Solid State Phenom 30(31):367–378

    Article  Google Scholar 

  67. Allard T, Muller J (1998) Kaolinite as an in situ dosimeter for past radionuclide migration at the Earth’s surface. Appl Geochem 13(6):751–765

    Article  CAS  Google Scholar 

  68. Farnan I, Cho H, Weber WJ (2007) Quantification of actinide R-radiation damage in minerals and ceramics. Nature 445:190–193

    Article  CAS  Google Scholar 

  69. Sorieul S, Allard T, Wang LM, Grambin-Lapeyre C, Lian J, Calas G, Ewing RC (2008) Radiation-stability of smectite. Environ Sci Technol 42(22):8407–8411

    Article  CAS  Google Scholar 

  70. Allard T, Calas G (2009) Radiation effects on clay mineral properties. Appl Clay Sci 43:143–149

    Article  CAS  Google Scholar 

  71. Fourdrin C, Allard T, Monnet I, Menguy N, Benedetti M, Calas G (2010) Effect of radiation-induced amorphization on smectite dissolution. Environ Sci Technol 44(7):2509–2514

    Article  CAS  Google Scholar 

  72. Wang SX, Wang LM, Ewing RC (2000) Electron and ion irradiation of zeolites. J Nucl Mater 278:233–241

    Article  CAS  Google Scholar 

  73. Gu BX, Wang LM, Minc LD, Ewing RC (2001) Temperature effects on the radiation stability and ion exchangecapacity of smectites. J Nucl Mater 297:345–354

    Article  CAS  Google Scholar 

  74. Gournis D, Mantaka-Marketou AE, Karakassides MA, Petridis D (2001) Ionizing radiation-induced defects in smectite clays. Phys Chem Miner 28:285–290

    Article  CAS  Google Scholar 

  75. Wang LM, Chen J, Ewing RC (2004) Radiation and thermal effects on porous and layer structured materials as getters of radionuclides. Curr Opin Solid State Mater Sci 8(6):405–418

    Article  CAS  Google Scholar 

  76. Holmboe M, Wold S, Jonsson M, Gaarcía-García S (2009) Effects of γ-irradiation on the stability of colloidal Na+-montmorillonite dispersions. Appl Clay Sci 43:86–90

    Article  CAS  Google Scholar 

  77. Holmboe M, Jonsson M, Wold S (2012) Influence of γ-radiation on the reactivity of montmorillonite towards H2O2. Radiat Phys Chem 81(2):190–194

    Google Scholar 

  78. Holmboe M, Norrfors K, Jonsson M, Wold S (2011) Effect of γ-radiation on radionuclide retention in compacted bentonite. Radiat Phys chem 80(12):1371–1377

    Article  CAS  Google Scholar 

  79. Rajec P, Mátel L, Orechovská J et al (1996) Sorption of radionuclides on inorganic sorbents. J Radioanal Nucl Chem Art 208(2):477–486

    Article  CAS  Google Scholar 

  80. Galamboš M, Kufčáková J, Rajec P (2009) Sorption of strontium on Slovak bentonites. J Radioanal Nucl Chem 281(3):347–357

    Article  Google Scholar 

  81. Galamboš M, Kufčáková J, Rajec P (2009) Adsorption of cesium on domestic bentonites. J Radioanal Nucl Chem 281(3):485–492

    Article  Google Scholar 

  82. Galamboš M, Kufčáková J, Rosskopfová O, Rajec P (2010) Adsorption of cesium and strontium on natrified bentonites. J Radioanal Nucl Chem 283(3):803–813

    Article  Google Scholar 

  83. Galamboš M, Paučová V, Kufčáková J, Rosskopfová O, Rajec P, Adamcová R (2010) Cesium sorption on bentonites and montmorillonite K10. J Radioanal Nucl Chem 284(1):55–64

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the research fund VEGA 1/0413/09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Galamboš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galamboš, M., Daňo, M., Rosskopfová, O. et al. Effect of gamma-irradiation on adsorption properties of Slovak bentonites. J Radioanal Nucl Chem 292, 481–492 (2012). https://doi.org/10.1007/s10967-012-1638-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1638-9

Keywords

Navigation