Skip to main content
Log in

Adsorption of uranium from aqueous solution using HDTMA+-pillared bentonite: isotherm, kinetic and thermodynamic aspects

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The ability of hexadecyltrimethylammonium cation pillared bentonite (HDTMA+-bentonite) has been explored for the removal and recovery of uranium from aqueous solutions. The adsorbent was characterized using small-angle X-ray diffraction, high resolution transmission electron microscopy, and Fourier transform infrared spectroscopy. The influences of different experimental parameters such as solution pH, initial uranium concentration, contact time, dosage and temperature on adsorption were investigated. The HDTMA+-bentonite exhibited the highest uranium sorption capacity at initial pH of 6.0 and at 80 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir isotherm. The thermodynamic parameters, △ (308 K), Δ, and Δ were determined to be −31.64, −83.84 kJ/mol, and −169.49 J/mol/K, respectively, which demonstrated the sorption process of HDTMA+-bentonite towards U(VI) was feasible, spontaneous, and exothermic in nature. The adsorption on HDTMA+-bentonite was more favor than Na-bentonite, in addition the saturated monolayer sorption capacity increased from 65.02 to 106.38 mg/g at 298 K after HDTMA+ pillaring. Complete removal (≈100%) of U(VI) from 1.0 L simulated nuclear industry wastewater containing 10.0 mg U(VI) ions was possible with 1.5 g HDTMA+-bentonite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Jackson BP, Ranville JF, Bertsch PM, Sowder AG (2005) Environ Sci Technol 39:2478–2485

    Article  CAS  Google Scholar 

  2. Donia AM, Atia AA, Moussa EMM, El-Sherif AM, El-Magied MOA (2009) Hydrometallurgy 95:183–189

    Article  CAS  Google Scholar 

  3. Smith SC, Douglas M, Moore DA, Kukkadapu RK, Arey BW (2009) Environ Sci Technol 43:2341–2347

    Article  CAS  Google Scholar 

  4. Xie S, Zhang C, Zhou X, Yang J, Zhang X, Wang J (2009) J Environ Radioact 100:162–166

    Article  CAS  Google Scholar 

  5. Djedidi Z, Bouda M, Souissi MA, Ben Cheikh R, Mercier G, Tyagi RD, Blais JF (2009) J Hazard Mater 172:1372–1382

    Article  CAS  Google Scholar 

  6. Abdel-Khalek AA, Ali MM, Ashour RM, Abdel-Magied AF (2011) J Radioanal Nucl Chem 290:353–359

    Article  CAS  Google Scholar 

  7. Kumari N, Prabhu DR, Pathak PN, Kanekar AS, Manchanda VK (2011) J Radioanal Nucl Chem 289:835–843

    Article  CAS  Google Scholar 

  8. Cojocaru C, Zakrzewska-Trznadel G, Jaworska A (2009) J Hazard Mater 169:599–609

    Article  CAS  Google Scholar 

  9. Cojocaru C, Zakrzewska-Trznadel G, Miskiewicz A (2009) J Hazard Mater 169:610–620

    Article  CAS  Google Scholar 

  10. Li X, Song Q, Liu B, Liu C, Wang H, Geng J, Chen Z, Liu N, Li S (2011) Prog Chem 23:1446–1453

    CAS  Google Scholar 

  11. Sprynskyy M, Kowalkowski T, Tutu H, Cukrowska EM, Buszewski B (2011) Chem Eng J 171:1185–1193

    Article  CAS  Google Scholar 

  12. Hussein AEM (2011) J Radioanal Nucl Chem 289:321–329

    Article  CAS  Google Scholar 

  13. Zhao HT, Jaynes WF, Vance GF (1996) Chemosphere 33:2089–2100

    Article  CAS  Google Scholar 

  14. Huh JK, Song DI, Jeon YW (2000) Sep Sci Technol 35:243–259

    Article  CAS  Google Scholar 

  15. Upson R, Burns S (2006) J Colloid Interface Sci 297:70–76

    Article  CAS  Google Scholar 

  16. Hsu YH, Wang MK, Pai CW, Wang YS (2000) Appl Clay Sci 16:147–159

    Article  CAS  Google Scholar 

  17. Dentel SK, Jamrah AI, Sparks DL (1998) Water Res 32:3689–3697

    Article  CAS  Google Scholar 

  18. Lee JJ, Choi J, Park JW (2002) Chemosphere 49:1309–1315

    Article  CAS  Google Scholar 

  19. Oyanedel-Craver VA, Fuller M, Smith JA (2007) J Colloid Interface Sci 309:485–492

    Article  CAS  Google Scholar 

  20. Akar ST, Yetimoglu Y, Gedikbey T (2009) Desalination 244:97–108

    Article  CAS  Google Scholar 

  21. Majdan M, Pikus S, Gajowiak A, Gładysz-Płaska A, Krzyżanowska H, Żuk J, Bujacka M (2010) Appl Surf Sci 256:5416–5421

    Article  CAS  Google Scholar 

  22. Majdan M, Pikus S, Gajowiak A, Sternik D, Zieba E (2010) J Hazard Mater 184:662–670

    Article  CAS  Google Scholar 

  23. Liu Y, Cao X, Hua R, Wang Y, Liu Y, Pang C, Wang Y (2010) Hydrometallurgy 104:150–155

    Article  CAS  Google Scholar 

  24. Bayramoglu G, Celik G, Arica M (2006) J Hazard Mater 136:345–353

    Article  CAS  Google Scholar 

  25. Aytas S, Yurtlu M, Donat R (2009) J Hazard Mater 172:667–674

    Article  CAS  Google Scholar 

  26. Hazer O, Kartal Ş (2010) Talanta 82:1974–1979

    Article  CAS  Google Scholar 

  27. Parab H, Joshi S, Shenoy N, Verma R, Lali A, Sudersanan M (2005) Bioresour Technol 96:1241–1248

    Article  CAS  Google Scholar 

  28. Ghaemi A, Torab-Mostaedi M, Ghannadi-Maragheh M (2011) J Hazard Mater 190:916–921

    Article  CAS  Google Scholar 

  29. Psareva T, Zakutevskyy O, Chubar N, Strelko V, Shaposhnikova T, Carvalho J, Correia M (2005) Colloid Surf A 252:231–236

    Article  CAS  Google Scholar 

  30. Anirudhan TS, Rijith S, Tharun AR (2010) Colloid Surf A 368:13–22

    Article  CAS  Google Scholar 

  31. Anirudhan TS, Divya L, Suchithra PS (2009) J Environ Manag 90:549–560

    Article  CAS  Google Scholar 

  32. Donat RJ (2009) Chem Thermodyn 41:829–835

    Article  CAS  Google Scholar 

  33. Kilincarslan A, Akyil S (2005) J Radioanal Nucl Chem 264(3):541–548

    Article  CAS  Google Scholar 

  34. Zhu W, Liu Z, Chen L, Dong Y (2011) J Radioanal Nucl Chem 289(3):781–788

    Article  CAS  Google Scholar 

  35. Zhao D, Yang S, Chen S, Guo Z, Yang X (2011) J Radioanal Nucl Chem 287(2):557–565

    Article  CAS  Google Scholar 

  36. Gao L, Yang Z, Shi K, Wang X, Guo Z, Wu W (2010) J Radioanal Nucl Chem 284(3):519–526

    Article  CAS  Google Scholar 

  37. Guerra DL, Leidens VL, Viana RR, Airoldi C (2010) J Solid State Chem 183(5):1141–1149

    Article  CAS  Google Scholar 

  38. Yusan S, Aslani MAA, Turkozu DA, Aycan HA, Aytas S, Akyil S (2010) J Radioanal Nucl Chem 283(1):231–238

    Article  CAS  Google Scholar 

  39. Mellah A, Chegrouche S, Barkat M (2006) J Colloid Interface Sci 296(2):434–441

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21101024), Key Project of Chinese Ministry of Education (Grant No. 211086), Natural Science Foundation of Jiangxi Province (No. 2010GQH0015), Science and Technology project of Jiangxi Provincial Department of Education (No. GJJ11139) and Open Project Foundation of the Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, China (2010RGET08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-bin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YQ., Zhang, Zb., Li, Q. et al. Adsorption of uranium from aqueous solution using HDTMA+-pillared bentonite: isotherm, kinetic and thermodynamic aspects. J Radioanal Nucl Chem 293, 231–239 (2012). https://doi.org/10.1007/s10967-012-1659-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1659-4

Keywords

Navigation