Skip to main content
Log in

Environmental condition effects on radionuclide 64Cu(II) sequestration to a novel composite: polyaniline grafted multiwalled carbon nanotubes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This work examines the sequestration of 64Cu(II) by sorption process onto plasma-induced polyaniline (PANI)-grafted multiwalled carbon nanotubes (denoted as MWCNTs/PANI) prepared by an plasma-induced grafting technique. The role of a variety of environmental conditions such as pH, ionic strength, natural organic matter (NOM) in the sorption of 64Cu(II) onto MWCNTs/PANI is studied. The results indicate that the sorption is strongly dependent on pH but independent of ionic strength. A positive effect of NOM on 64Cu(II) sorption is found at pH <7.5, whereas a negative effect is observed at pH >7.5. The sorption isotherms in the absence and presence of NOM can be better described by Freundlich model than Langmuir model. Sorption isotherms of 64Cu(II) at higher initial NOM concentrations are higher than those at lower NOM concentrations. The thermodynamic data calculated from temperature-dependent sorption suggest that the sorption is spontaneous and enhanced at higher temperature. Results of this work suggest that MWCNTs/PANI may be a promising candidate for cost-effective treatments of 64Cu(II)-contaminated wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nriagu JO, Pacyna JM (1988) Nature 333:134–139

    Article  CAS  Google Scholar 

  2. Wingenfelder U, Hansen C, Furrer G, Schulin R (2005) Environ Sci Technol 39:4606–4613

    Article  CAS  Google Scholar 

  3. Liu JF, Zhao ZS, Jiang GB (2008) Environ Sci Technol 42:6949–6954

    Article  CAS  Google Scholar 

  4. Sekar M, Sakthi V, Rengaraj S (2004) J Colloid Interf Sci 279:307–313

    Article  CAS  Google Scholar 

  5. Demirbas A, Pehlivan E, Gode F, Altun T, Arslan G (2005) J Colloid Interf Sci 282:20–25

    Article  CAS  Google Scholar 

  6. Feng X, Fryxell GE, Wang LQ, Kim AY, Liu J, Kemner KM (1997) Science 276:923–926

    Article  CAS  Google Scholar 

  7. Li YH, Di ZC, Ding J, Wu DH, Luan ZK, Zhu YQ (2005) Water Res 39:605–609

    Article  CAS  Google Scholar 

  8. Tian XL, Zhou S, Zhang ZY, He X, Yu MJ, Lin DH (2010) Environ Sci Technol 44:8144–8149

    Article  CAS  Google Scholar 

  9. Wang HJ, Zhou AL, Peng F, Yu H, Chen LF (2007) Mater Sci Eng 466:201–206

    Article  Google Scholar 

  10. Meleshyn A, Azeroual M, Reeck T, Houben G, Riebe B, Bunnenberg C (2009) Environ Sci Technol 43:4896–4901

    Article  CAS  Google Scholar 

  11. Marcussen H, Holm PE, Strobel BW, Hansen HCB (2009) Environ Sci Technol 43:1122–1127

    Article  CAS  Google Scholar 

  12. Rouff AA, Elzinga EJ, Reeder RJ (2006) Environ Sci Technol 401:792–1798

    Google Scholar 

  13. Wang YJ, Jia DA, Sun RJ, Zhu HW, Zhou DM (2008) Environ Sci Technol 42:3254–3259

    Article  CAS  Google Scholar 

  14. Wang SB, Terdkiatburana T, Tadé MO (2008) Sep Purif Technol 62:64–70

    Article  CAS  Google Scholar 

  15. Reddad Z, Gerente C, Andres Y, Le Cloirec P (2002) Environ Sci Technol 36:2067–2073

    Article  CAS  Google Scholar 

  16. Parsons JG, Tiemann KJ, Peralta-Videa JR, Gardea-Torresdey JL (2006) Environ Sci Technol 40:4181–4188

    Article  CAS  Google Scholar 

  17. Deng S, Ting YP (2005) Environ Sci Technol 398:490–8496

    Google Scholar 

  18. Oliveira LCA, Rios RVRA, Fabris JD, Garg V, Sapag K, Lago RM (2002) Carbon 40:2177–2183

    Article  CAS  Google Scholar 

  19. Shao DD, Hu J, Chen CL, Sheng GD, Ren XM, Wang XK (2010) J Phys Chem C 114:21524–21530

    Article  CAS  Google Scholar 

  20. Moon HS, Park JK (1998) Macromolecules 31:6461–6468

    Article  CAS  Google Scholar 

  21. Buga K, Majkowska A, Pokrop R, Zagorska M, Djurado D, Pron A, Oddou JL, Lefrant S (2005) Chem Mater 17:5754–5762

    Article  CAS  Google Scholar 

  22. Wang J, Deng B, Chen H, Wang X, Zheng J (2009) Environ Sci Technol 43:5223–5228

    Article  CAS  Google Scholar 

  23. Yunus S, Attout A, Bertrand P (2009) Langmuir 25:1851–1854

    Article  CAS  Google Scholar 

  24. Kulszewicz-Bajer I, Gosk J, Pawłowski M, Gambarelli S, Djurado D, Twardowski A (2007) J Phys Chem B 111:9421–9423

    Article  CAS  Google Scholar 

  25. Li ZF, Ruckenstein E (2002) J Colloid Interf Sci 251:343–349

    Article  CAS  Google Scholar 

  26. Hassanein MA, El-Said H, El-Amir MA (2006) J Radioanal Nucl Chem 269:75–80

    Article  CAS  Google Scholar 

  27. So LV, Pellegrini P, Katsifis A, Howse J, Greguric I (2008) J Radioanal Nucl Chem 277:451–466

    Article  CAS  Google Scholar 

  28. Rengaraj S, Kim Y, Joo CK, Yi J (2004) J Colloid Interf Sci 273:14–21

    Article  CAS  Google Scholar 

  29. Yang ST, Zhao DL, Sheng GD, Guo ZQ, Sun YB (2011) J Radioanal Nucl Chem 289:467–477

    Article  CAS  Google Scholar 

  30. Yang ST, Sheng GD, Tan XL, Hu J, Du JZ, Montavon G, Wang XK (2011) Geochim Cosmochim Acta 75:6520–6534

    Article  CAS  Google Scholar 

  31. Tan XL, Wang XK, Geckeis H, Rabung Th (2008) Environ Sci Technol 42:6532–6537

    Article  CAS  Google Scholar 

  32. Montavon G, Rabung Th, Geckeis H, Grambow B (2004) Environ Sci Technol 38:4312–4318

    Article  CAS  Google Scholar 

  33. Chen CL, Wang XK, Nagatsu M (2009) Environ Sci Technol 43:2362–2367

    Article  CAS  Google Scholar 

  34. Lu SS, Guo ZQ, Zhang CC, Zhang SW (2011) J Radioanal Nucl Chem 287:621–628

    Article  CAS  Google Scholar 

  35. Chen L, Yu XJ, Zhao ZD, Pan JS (2008) J Radioanal Nucl Chem 275:209–216

    Article  CAS  Google Scholar 

  36. Hu BW, Cheng W, Zhang H, Sheng GD (2011) J Radioanal Nucl Chem 287:989–990

    Article  CAS  Google Scholar 

  37. Sheng G, Sheng J, Yang S, Hu J, Wang X (2011) J Radioanal Nucl Chem 289:129–135

    Article  CAS  Google Scholar 

  38. Zuo LM, Yu SM, Zhou H, Tian X, Jiang J (2011) J Radioanal Nucl Chem 288:379–387

    Article  CAS  Google Scholar 

  39. Shao DD, Jiang Z, Wang XK, Li J, Meng Y (2009) J Phys Chem B 11:3860–3864

    Google Scholar 

  40. Al-Qunaibit MH, Mekhemer WK, Zaghloul AA (2005) J Colloid Interf Sci 283:316–321

    Article  CAS  Google Scholar 

  41. Hu BW, Cheng W, Zhang H, Yang ST (2010) J Nucl Mater 406:263–270

    Article  CAS  Google Scholar 

  42. Zhu WB, Liu ZJ, Chen L, Dong YH (2011) J Radioanal Nucl Chem 289:781–788

    Article  CAS  Google Scholar 

  43. Zhang LP, Zhang H, Ge ZW, Yu XJ (2011) J Radioanal Nucl Chem 288:537–546

    Article  CAS  Google Scholar 

  44. Ho YS (1995) Ph.D. thesis. UK, University of Birmingham

  45. Ho YS, McKay G (2000) Water Res 347:35–42

    Google Scholar 

  46. Ho YS (2006) J Hazard Mater 136:681–689

    Article  CAS  Google Scholar 

  47. Hu BW, Cheng W, Zhang H, Sheng GD (2010) J Radioanal Nucl Chem 285:389–398

    Article  CAS  Google Scholar 

  48. Wen T, Chen YT, Cai LS (2011) J Radioanal Nucl Chem 290:437–446

    Article  CAS  Google Scholar 

  49. Yang ST, Zhao D, Zhang H, Lu S, Chen L, Yu X (2010) J Hazard Mater 183:632–640

    Article  CAS  Google Scholar 

  50. Guo ZQ, Zhao DL, Li Y, Chen ZS, Niu HH, Xu JZ (2011) J Radioanal Nucl Chem 288:829–837

    Article  CAS  Google Scholar 

  51. Lee YJ, Elzinga EJ, Reeder RJ (2005) Geochim Cosmochim Acta 69:49–61

    Article  CAS  Google Scholar 

  52. Sheng GD, Li JX, Shao DD, Hu J, Chen CL, Chen YX, Wang XK (2010) J Hazard Mater 178:333–340

    Article  CAS  Google Scholar 

  53. Hayes KF, Leckie JO (1987) J Colloid Interf Sci 115:564–572

    Article  CAS  Google Scholar 

  54. Scheidegger AM, Fendorf M, Sparks DL (1996) Soil Sci Soc Am J 60:1763–1772

    Article  CAS  Google Scholar 

  55. Sheng GD, Yang ST, Sheng J, Hu J, Tan X, Wang XK (2011) Environ Sci Technol 45:7718–7726

    Article  CAS  Google Scholar 

  56. Kosmulski M (1997) J Colloid Interf Sci 190:212–223

    Article  CAS  Google Scholar 

  57. Zhao DL, Zhang CC, Xu JZ, Niu ZW (2011) J Radioanal Nucl Chem 289:671–678

    Article  CAS  Google Scholar 

  58. Hu J, Xu D, Chen L, Wang XK (2009) J Radioanal Nucl Chem 279:701–708

    Article  CAS  Google Scholar 

  59. Tan LQ, Jin YL, Chen J, Cheng XC, Wu J, Feng LD (2011) J Radioanal Nucl Chem 289:601–610

    Article  CAS  Google Scholar 

  60. Zuo LM, Yu SM, Zhou H, Jiang J, Tian X (2011) J Radioanal Nucl Chem 288:579–586

    Article  CAS  Google Scholar 

  61. Zhang SW, Guo ZQ, Xu JZ, Niu HH, Chen ZS, Xu JZ (2011) J Radioanal Nucl Chem 288:121–130

    Article  CAS  Google Scholar 

  62. Guo ZQ, Li Y, Zhang SW, Niu HH, Chen ZS, Xu JZ (2011) J Hazard Mater 192:168–175

    Article  CAS  Google Scholar 

  63. Yang ST, Li JX, Shao DD, Hu J, Wang XK (2009) J Hazard Mater 166:109–116

    Article  CAS  Google Scholar 

  64. Guo ZQ, Xu DP, Zhao DL, Zhang SW, Xu JZ (2011) J Radioanal Nucl Chem 287:505–512

    Article  CAS  Google Scholar 

  65. Yang S, Guo Z, Sheng G, Wang X (2012) Sci Total Environ. doi: 10.1016/j.scitotenv.2012.01.018

  66. Chen L, Yu SM, Zuo LM, Liu B, Huang LL (2011) J Radioanal Nucl Chem 289:511–520

    Article  CAS  Google Scholar 

  67. Chen CL, Xu D, Tan XL, Wang XK (2007) J Radioanal Nucl Chem 273:227–233

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the National Natural Science Foundation of China (20907055; 20971126), 973 project (2007CB936602), the Knowledge Innovation Program of CAS and Special Foundation for High-level Waste Disposal (2007–840) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Sheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, G., Li, Y., Dong, H. et al. Environmental condition effects on radionuclide 64Cu(II) sequestration to a novel composite: polyaniline grafted multiwalled carbon nanotubes. J Radioanal Nucl Chem 293, 797–806 (2012). https://doi.org/10.1007/s10967-012-1735-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1735-9

Keywords

Navigation