Skip to main content
Log in

Study on selective separation of cesium from high level liquid waste using a macroporous silica-based supramolecular recognition absorbent

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A macroporous silica-based supramolecular recognition absorbent (Calix[4] + Dodecanol)/SiO2–P, was prepared by successive impregnation and fixing the 1,3-[(2,4-diethylheptylethoxy)oxy]-2,4-crown-6-Calix[4]arene (Calix[4]arene-R14) and its molecule modifier 1-Dodecanol onto SiO2 silica-based polymer support. The characterization of (Calix[4] + Dodecanol)/SiO2–P was examined by thermal gravimetry and differential thermal analysis and electron probe microanalysis. Relatively large separation factors of Cs and other metal ions (α n+Cs/M ) above 60 were obtained in the presence of 3 M HNO3. The adsorption data of Cs(I) fitted well with Langmuir isotherm and the maximum adsorption capacity was estimated to be 0.19 mmol g−1. The Cs(I) in 3 M HNO3 were also effectively adsorption on (Calix[4] + Dodecanol)/SiO2–P in the column operation, and the loaded Cs(I) was successfully eluted with an eluent of H2O. The column packed with (Calix[4] + Dodecanol)/SiO2–P had excellent reusability after three cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kubota M, Okata K, Yamaguchi I, Morita Y (1986) Radioact Waste Manag Nucl Fuel Cycle 7:303

    Google Scholar 

  2. IAEA (1993) IAEA Technical Report Series No. 356

  3. Atomic Energy Society of Japan (AESJ) (2006) J At Energy Soc Jpn 48:327

    Google Scholar 

  4. Ando Y, Takano H (1999) JAEA JAERI-Research 99-004

  5. Loewenschuss H (1982) Radioact Waste Manag 24:327

    Google Scholar 

  6. Lehto J, Harjula R (1987) Solvent Extr Ion Exch 5:343

    Article  CAS  Google Scholar 

  7. Lehto J, Harjula R, Wallace J (1987) J Radioanal Nucl Chem 111:297

    Article  CAS  Google Scholar 

  8. Beheir ShG, Benyamin K, Mekhail FM (1998) J Radioanal Nucl Chem 232:147

    Article  CAS  Google Scholar 

  9. Mimura H, Kobayashi T, Akiba K (1995) J Nucl Sci Technol 32:60

    CAS  Google Scholar 

  10. Chiarizia R, Horwitz EP, Bauvais RA, Alexandratos SD (1998) Solvent Extr Ion Exch 16:875

    Article  CAS  Google Scholar 

  11. Mimura H, Saito M, Akiba K, Onodera Y (2000) Solvent Extr Ion Exch 18:1015

    Article  CAS  Google Scholar 

  12. Reguillon AF, Dunjic B, Lemaiue M, Chomel R (2001) Solvent Extr Ion Exch 19:181

    Article  Google Scholar 

  13. Schulz WW, Bray LA (1985) Sep Sci Technol 22:191

    Article  Google Scholar 

  14. Dozol JF, Simon N, Lamare V, Roquette H, Eymard S, Tournois B, DeMarc D, Macias RM (1999) Sep Sci Technol 34(6&7):877

    Article  CAS  Google Scholar 

  15. Sachleben RA, Bonnesen PV, Descazeaud T, Haverlock TJ, Urvoas A, Moyer BA (1999) Solvent Extr Ion Exch 17:1445

    Article  CAS  Google Scholar 

  16. Sachleben RA, Urvoas A, Bryan JC, Haverlock TJ, Hay BP, Moyer BA (1999) Chem Commun 17:1751

    Article  Google Scholar 

  17. Delmau LH, Bonnesen PV, Moyer BA (2004) Hydrometallurgy 72:9

    Article  CAS  Google Scholar 

  18. Ji H-F, Dabestani R, Brown GM, Hettich RL (2001) J Chem Soc Perkin Trans 2:585

    Google Scholar 

  19. Engle NL, Bonnesen PV, Tomkins BA, Haverlock TJ, Moyer BA (2004) Solvent Extr Ion Exch 22:611

    Article  CAS  Google Scholar 

  20. Delmau LH, Lefranc TJ, Bonnesen PV, Bryan JC, Presley DJ, Moyer BA (2005) Solvent Extr Ion Exch 23:23

    Article  CAS  Google Scholar 

  21. Riddle CL, Baker JD, Law JD, McGrath CA, Meikrantz DH, Mincher BJ, Peterman DR, Todd TA (2005) Solvent Extr Ion Exch 23:449

    Article  CAS  Google Scholar 

  22. Asfari Z, Wenger S, Vicens J (1994) J Incl Phenom Mol Recognit Chem 19:137

    Article  CAS  Google Scholar 

  23. Wei Y-Z, Kumagai M, Takashima Y, Modolo G, Odoj R (2000) Nucl Technol 132:413

    CAS  Google Scholar 

  24. Wei Y-Z, Zhang A, Kumagai M, Watanabe M, Hayashi N (2004) J Nucl Sci Technol 41:315

    Article  CAS  Google Scholar 

  25. Zhang AY, Hui QH, Chai Z (2010) Chem Eng J 159:58

    Article  CAS  Google Scholar 

  26. Zhang AY, Hui QH, Chai Z (2010) Ind Eng Chem Res 49:2047

    Article  CAS  Google Scholar 

  27. Zhang AY, Xiao CL, Xue WJ, Chai ZF (2009) Sep Purif Technol 66:541

    Article  CAS  Google Scholar 

  28. Zhang AY, Kuraoka E, Kumagai M (2007) J Chromatogr A 1157:85

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Present study is the result of “Breaking New Ground in the Research of Atomic Energy Application” entrusted to Tohoku University by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.-Y. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Kim, SY., Tozawa, D. et al. Study on selective separation of cesium from high level liquid waste using a macroporous silica-based supramolecular recognition absorbent. J Radioanal Nucl Chem 293, 13–20 (2012). https://doi.org/10.1007/s10967-012-1738-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1738-6

Keywords

Navigation