Skip to main content
Log in

Adsorptive removal of thorium from aqueous solution using diglycolamide functionalized multi-walled carbon nanotubes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes (MWCNTs) were functionalized with diglycolamide (DGA) through chemical covalent route. The adsorption behavior of the DGA-functionalized-MWCNTs (DGA-MWCNTs) towards thorium from aqueous solution was studied under varying operating conditions of pH, concentration of thorium, DGA-MWCNTs dosages, contact time, and temperature. The effective range of pH for the removal of Th(IV) is 3.0–4.0. Kinetic data followed a pseudo-second-order model. The equilibrium data were correlated with the Langmuir, Freundlich, Dubinin-Radushkevich and Temkin models. The equilibrium data are best fitted with Langmuir model. The equilibrium Th(IV) sorption capacity was estimated to be 10.58 mg g−1 at 298 K. The standard enthalpy, entropy, and free energy of adsorption of the thorium with DGA-MWCNTs were calculated to be 8.952 kJ mol−1, 0.093 kJ mol−1 K−1 and -18.521 kJ mol−1 respectively at 298 K. The determined value of sticking probability (0.072) and observed kinetic and isotherm models reveal the chemical adsorption of thorium on DGA-MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Salinas-Pedroza MG, Olguin MT (2004) J Radioanal Nucl Chem 260(1):115–118

    Article  CAS  Google Scholar 

  2. Metaxas M, Kasselouri-Rigopoulou V, Galiatsatou P, Konstantopoulou C, Oikonomou D (2003) J Hazard Mater B97:71–82

    Article  Google Scholar 

  3. Liao X, Li L, Shi B (2004) J Radioanal Nucl Chem 260(3):619–625

    Article  CAS  Google Scholar 

  4. Anirudhan TS, Rijith S, Tharun AR (2010) Colloids Surf A 368:13–22

    Article  CAS  Google Scholar 

  5. Dyer A, Jozefowicz LC (1992) J Radioanal Nucl Chem 159:47–62

    Article  CAS  Google Scholar 

  6. Qadeer R, Hanif J, Saleem M, Afzal M (1992) J Radioanal Nucl Chem 157(2):321–334

    Article  CAS  Google Scholar 

  7. Hu T, Tan L (2012) J Radioanal Nucl Chem 292:819–827

    Article  CAS  Google Scholar 

  8. Zhao DL, Feng SJ, Chen CL, Chen SH, Xu D, Wang XK (2008) Appl Clay Sci 41:17–23

    Article  CAS  Google Scholar 

  9. Aslani MAA, Eral M, Akyil (1998) J Radioanal Nucl Chem 238(1–2):123–127

    Article  CAS  Google Scholar 

  10. Nakajima A, Tsuruta T (2004) J Radioanal Nucl 260(1):13–18

    Article  CAS  Google Scholar 

  11. Tsuruta T (2004) Water Air Soil Pollut 159:35–47

    Article  CAS  Google Scholar 

  12. Ozay O, Ekici S, Aktas N, Sahiner N (2011) J Environ Manage 92:3121–3129

    Article  CAS  Google Scholar 

  13. Akkaya R, Ulusoy U (2008) J Hazard Mater 151:380–388

    Article  CAS  Google Scholar 

  14. Kaygun AK, Akyil S (2007) J Hazard Mater 147:357–362

    Article  CAS  Google Scholar 

  15. Ulusoy U, Akkaya R (2009) J Hazard Mater 163:98–108

    Article  CAS  Google Scholar 

  16. Qadeer R, Hanif J, Hanif I (1995) J Radioanal Nucl Chem 190(1):112–130

    Article  Google Scholar 

  17. Korkisch J, tera F (1961) Anal Chem 33(9):1264–1266

    Article  CAS  Google Scholar 

  18. Korkisch J, Orlandini KA (1968) Anal Chem 40(13):1952–1955

    Article  CAS  Google Scholar 

  19. Chandramouleeswaran S, Ramkumar J, Sudarsan V, Reddy AVR (2011) J Hazard Mater 198:159–164

    Article  CAS  Google Scholar 

  20. Metilda P, Gladis JM, Prasada Rao T (2005) Radiochim Acta 93:219–224

    Article  CAS  Google Scholar 

  21. Hritcu D, Humelnicu D, Dodi G, Popa MI (2012) Carbohydr Polym 87:1185–1191

    Article  CAS  Google Scholar 

  22. Hussein AEM (2011) J Radioanal Nucl Chem 289:321–329

    Article  CAS  Google Scholar 

  23. Rao GP, Lu C, Su F (2007) Sep Sci Technol 58:224–231

    CAS  Google Scholar 

  24. Ren X, Chen C, Nagatsu M, Wang X (2011) Chem Eng J 170:395–410

    Article  CAS  Google Scholar 

  25. Schierz A, Zanker H (2009) Environ Pollut 157:1088–1094

    Article  CAS  Google Scholar 

  26. Sun Y, Yang S, Sheng G, Guo Z, Wang X (2012) J Environ Radioact 105:40–47

    Article  CAS  Google Scholar 

  27. Wang M, Tao X, Song X (2011) J Radioanal Nucl Chem 122:859–865

    Article  Google Scholar 

  28. Perevalov SA, Molochnikova NP (2009) J Radioanal Nucl Chem 281:603–608

    Article  CAS  Google Scholar 

  29. Wang X, Chen C, Hu W, Ding A, Xu D, Zhou X (2005) Environ Sci Technol 39:2856–2860

    Article  CAS  Google Scholar 

  30. Yavari R, Huang YD, Ahmandi SJ (2011) J Radioanal Nucl Chem 287:393–401

    Article  CAS  Google Scholar 

  31. Tan XL, Chen CL, Wang XK, Hu WP (2008) Radiochim Acta 96:23–29

    Article  CAS  Google Scholar 

  32. Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, Park CR (2012) Carbon 50:3–33

    Article  CAS  Google Scholar 

  33. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106(3):1105–1136

    Article  CAS  Google Scholar 

  34. Sasaki Y, Choppin GR (1996) Anal Sci 12:225–230

    Article  CAS  Google Scholar 

  35. Manchanda VK, Pathak PN (2004) Sep Sci Technol 35:85–103

    CAS  Google Scholar 

  36. Deb AKS, Ilaiyaraja P, Ponraju D, Venkatraman B (2012) J Radioanal Nucl Chem 291:877–883

    Article  CAS  Google Scholar 

  37. Lagergren S (1898) Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  38. Ho YS, McKay G (1998) Trans IchemE 76(B):313–318

  39. Chien SH, Clayton WR (1980) Soil Sci Soc Am J 44:265–268

    Article  CAS  Google Scholar 

  40. Weber WJ, Morris JC (1963) J Sanit Eng Div Am Soc Civ Eng 89:31–59

    Google Scholar 

  41. Allen SJ, Mckay G, Porter JF (2004) J Colloid Interf Sci 280:322–333

    Article  CAS  Google Scholar 

  42. Asgari G, Roshani B, Ghanizadeh G (2012) J Hazard Mater 217–218:123–132

    Article  Google Scholar 

  43. Jung LS, Campbell CT (2000) J Phys Chem B 104:11168–11178

    Article  CAS  Google Scholar 

  44. Sundaram CS, Viswanathan N, Meenakshi S (2008) J Hazard Mater 155:206–215

    Article  CAS  Google Scholar 

  45. Li K, Liu Z, Wen T, Chen L, Dong Y (2012) J Radioanal Nucl Chem 292:269–276

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Shri S. C. Chetal, Director, IGCAR for his support during this work. The authors thank Dr. D. Ponraju, Head, PCS, SED, IGCAR for valuable suggestions and Shri H. Krishnan, Shri Shailesh Joshi, RSD, IGCAR for their help during the experiments and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Kumar Singha Deb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deb, A.K.S., Mohanty, B.N., Ilaiyaraja, P. et al. Adsorptive removal of thorium from aqueous solution using diglycolamide functionalized multi-walled carbon nanotubes. J Radioanal Nucl Chem 295, 1161–1169 (2013). https://doi.org/10.1007/s10967-012-1899-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1899-3

Keywords

Navigation