Skip to main content
Log in

Fabrication and physical properties of lanthanide oxide glass wasteform for the immobilization of lanthanide oxide wastes generated from pyrochemical process

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The pyrochemical process, which uses a dry method to recycle used nuclear fuel generates waste LiCl–KCl salt containing radioactive lanthanide elements. To reuse LiCl–KCl salt, the lanthanide elements are separated through a precipitation method promoted by oxygen sparging and the separated fission product of lanthanide oxide should be fabricated into durable wasteforms sustainable for several 1,000 years to store in a final geological repository. Herein, we report the fabrication of a borosilicate glass based wasteform with a glass matrix of SiO2–Al2O3–B2O3 having a high waste loading of 50 wt% lanthanide oxide. Th physical properties of four kinds of wasteforms having a different lanthanide oxide waste composition were evaluated. To investigate the long-term physical stability of each sample having 50 wt% lanthanide oxide waste loading, time–temperature–transformation (TTT) test was conducted at 500 and 700 °C for 60 and 180 h, and the physical properties were evaluated after each TTT test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mcpheeters CC, Pierce RD, Mulcahey TP (1997) Prog Nucl Energy 31:175–186

    Article  CAS  Google Scholar 

  2. Lee HS, Hur JM, Kim JG, Ahn DH, Cho YZ, Paek SW (2011) Energy Procedia 7:391–395

    Article  Google Scholar 

  3. Lee HS, Park GI, Kang KH, Hur JM, Kim JG, Ahn DH, Cho YZ, Kim EH (2011) Nucl Eng Technol 43:317–328

    Article  CAS  Google Scholar 

  4. Harrison MT, Simms HE, Jackson A, Lewin RG (2008) Radiochim Acta 96:295–301

    Article  CAS  Google Scholar 

  5. Cho YZ, Yang HC, Park GH, Lee HS, Kim IT (2009) J Nucl Mater 384:256–261

    Article  CAS  Google Scholar 

  6. Cho YZ, Lee TK, Eun HC, Choi JH, Kim IT, Park GI (2013) J Nucl Mater 437:47–54

    Article  CAS  Google Scholar 

  7. Eun HC, Kim JH, Cho YZ, Choi JH, Lee TK, Park HS, Park GI (2013) J Nucl Mater. doi:10.1016/j.jnucmat.2013.08.021

    Google Scholar 

  8. Volkovich VA, Griffiths TR, Thied RC (2003) J Nucl Mater 323:49–56

    Article  CAS  Google Scholar 

  9. Amamoto I, Kofuji H, Myochin M, Takasaki Y, Yano Y, Terai T (2009) J Nucl Mater 389:142–148

    Article  CAS  Google Scholar 

  10. Donald IW, Metcalfe BL, Taylor RNJ (1997) J Mater Sci 32:5851–5887

    Article  CAS  Google Scholar 

  11. Ojovan MI, Lee WE (2011) Metall Mater Trans 42A:837–851

    Article  Google Scholar 

  12. Laverov NP, Omel’yanenko BI, Yudintsev SV, Stefanovsky SV, Nikonov BS (2013) Geol Ore Deposits 55:71–95

    Article  Google Scholar 

  13. Mishra PK, De V, Ghongane DE, Valsala TP, Sonavane MS (2013) J Therm Anal Calorim 112:103–108

    Article  CAS  Google Scholar 

  14. Park HS, Kim IT, Kim HY, Ryu SK, Kim JH (2007) Environ Sci Technol 41:1345–1351

    Article  CAS  Google Scholar 

  15. Park HS, Kim IT, Cho YJ, Eun HC, Kim JH (2007) Environ Sci Technol 41:7536–7542

    Article  CAS  Google Scholar 

  16. Park HS, Kim IT, Cho YJ, Eun HC, Lee HS (2008) Environ Sci Technol 42:9357–9362

    Article  CAS  Google Scholar 

  17. Park HS, Cho IH, Eun HC, Kim IT, Cho YZ, Lee HS (2011) Environ Sci Technol 45:1932–1939

    Article  CAS  Google Scholar 

  18. Bibler NE, Kinard WF, Boyce WT, Coleman CJ (1998) J Radioanal Nucl Chem 234:159–163

    Google Scholar 

  19. Kazemian H, Mallah MH, Maragheh MG (2004) J Radioanal Nucl Chem 261:619–623

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2012M2A8A5025801), and by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by Korea government Ministry of Knowledge Economy (2012T100100477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwan-Seo Park.

Additional information

Jung-Hoon Choi and In-Hak Cho have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, JH., Cho, IH., Eun, HC. et al. Fabrication and physical properties of lanthanide oxide glass wasteform for the immobilization of lanthanide oxide wastes generated from pyrochemical process. J Radioanal Nucl Chem 299, 1731–1738 (2014). https://doi.org/10.1007/s10967-013-2863-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2863-6

Keywords

Navigation