Skip to main content
Log in

A comparative study using liquid scintillation counting to determine 63Ni in low and intermediate level radioactive waste

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A comparative study using liquid scintillation counting was performed to measure 63Ni in low and intermediate level radioactive waste. Three dimethylglyoxime (DMG)-based radiochemical procedures (solvent extraction, precipitation, extraction chromatography) were investigated, the solvent extraction method being considered as the reference method. Theoretical speciation calculations enabled to better understand the chemical reactions involved in the three protocols and to optimize them. In comparison to the method based on DMG precipitation, the method based on extraction chromatography allowed to achieve the best results in one single step in term of recovery yield and accuracy for various samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. ANDRA, National Radioactive Waste Management Agency (2014) ACO.SP.ASRE.99.0002D ANDRA specifications. Accessed 5 June 2015

  2. Hou X, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 608:105–139

    Article  CAS  Google Scholar 

  3. Hoeppener-Kramar U, Pimpl M, Willmann F (1997) Application of procedures for low level radionuclide analysis in environmental monitoring for the purpose of clearance measurements of materials from decommissioning of nuclear facilities. J Radioanal Nucl Chem 226:99–103

    Article  CAS  Google Scholar 

  4. Lee CH, Lee MH, Ha YK, Song KS (2011) Systematic radiochemical separation for the determination of 99Tc, 90Sr, 94Nb, 55Fe and 59,63Ni in low and intermediate radioactive waste samples. J Radioanal Nucl Chem 288:319–325

    Article  CAS  Google Scholar 

  5. Lee CH, Choi KS, Song BC, Ha YK, Song K (2013) Rapid separation of nickel for 59Ni and 63Ni activity measurement in radioactive waste samples. J Radioanal Nucl Chem 298:1221–1226

    Article  CAS  Google Scholar 

  6. Hou X, Østergaard LF, Nielsen SP (2005) Determination of 63Ni and 55Fe in nuclear waste samples using radiochemical separation and liquid scintillation counting. Anal Chim Acta 535:297–307

    Article  CAS  Google Scholar 

  7. Hou X (2007) Radiochemical analysis of radionuclides difficult to measure for waste characterization in decommissioning of nuclear facilities. J Radioanal Nucl Chem 273:43–48

    Article  CAS  Google Scholar 

  8. Poletiko C (1988) Determination of nickel-63. Environ Int 14:387–390

    Article  CAS  Google Scholar 

  9. Numajiri M, Oki Y, Suzuki T, Miura T, Taira M, Kanda Y, Kondo K (1994) Estimation of nickel-63 in steel and copper activated at high-energy accelerator facilities. Appl Radiat Isot 45:509–514

    Article  CAS  Google Scholar 

  10. Scheuerer C, Schupfner R, Schottelkopf H (1995) A very sensitive LSC procedure to determine Ni-63 in environmental samples, steel and concrete. J Radioanal Nucl Chem 193:127–131

    Article  CAS  Google Scholar 

  11. Shizuma K, Iwatani K, Hasai H, Oka T, Hoshi M, Shibata S, Imamura M, Shibata T (1997) Identification of 63Ni and 60Co produced in a steel sample by thermal neutrons from the Hiroshima atomic bomb. Nucl Instrum Methods Phys Res, Sect A 384:375–379

    Article  CAS  Google Scholar 

  12. Rosskopfova O, Galambo M, Rajec P (2011) Determination of 63Ni in low level solid radioactive waste. J Radioanal Nucl Chem 289:251–256

    Article  CAS  Google Scholar 

  13. Taddei MHT, Macacini JF, Vicente R, Marumo JT, Sakata SK, Terremoto LAA (2013) Determination of 63Ni and 59Ni in spent ion-exchange resin and activated charcoal from the IEA-R1 nuclear research reactor. Appl Radiat Isot 77:50–55

    Article  CAS  Google Scholar 

  14. Kaye JH, Strebin RS, Nevissi AE (1994) Measurement of 63Ni in highly radioactive Hanford waste by liquid scintillation couting. J Radioanal Nucl Chem 180:197–200

    Article  CAS  Google Scholar 

  15. Warwick PE, Croudace IW (2006) Isolation and quantification of 55Fe and 63Ni in reactor effluents using extraction chromatography and liquid scintillation analysis. Anal Chim Acta 567:277–285

    Article  CAS  Google Scholar 

  16. Jordan N, Michel H, Barci-Funel G, Barci V (2008) Radiochemical procedure and quantitative determination of the activation product, 63Ni, in environmental soft water samples with high Ca and Mg phosphate concentration. J Radioanal Nucl Chem 275:253–256

    Article  CAS  Google Scholar 

  17. Remenec B, Dulanska S, Matel L (2013) Determination of difficult to measure radionuclides in primary circuit facilities of NPP V1 Jaslovske Bohunice. J Radioanal Nucl Chem 298:1879–1884

    Article  CAS  Google Scholar 

  18. Holm E, Rots P, Skwarzec B (1992) Radioanalytical Studies of Fallout 63Ni. Appl Radiat Isot 43:371–376

    Article  CAS  Google Scholar 

  19. Laboratoire National Henri Becquerel (2005) Table de radionucléides—63Ni

  20. Yonezawa C, Sagawa T, Hoshi M, Tachikama E (1983) Rapid determination of specific activity of nickel-63. J Radioanal Nucl Chem 78:7–14

    Article  CAS  Google Scholar 

  21. AFNOR Standard NF M60-317 (2001) Nuclear energy—nuclear fuel technology—waste—determination of nickel 63 in effluents and waste by liquid scintillation after a preliminary chemical extraction. Association Française de Normalisation, Paris, France

  22. European Chemicals Agency (2012) Guidance for the implementation of REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals). Accessed 5 June 2015

  23. Rajkovich S, Cahill D, Peedin L, Wheland S, Lardy M (1996) 2 case studies using Eichrom’s Nickel resin: a nuclear power plant and a commercial laboratory. Eichrom Cincinnati Users’ Seminar, USA. Accessed 5 June 2015

  24. Horwitz EP, Dietz ML, Chiarizia R, Diamond H, Maxwell SL, Nelson MR (1995) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions. Anal Chim Acta 310:63–78

    Article  CAS  Google Scholar 

  25. Gautier C, Coppo M, Caussignac C, Fichet P, Goutelard F (2013) Zr and U determination at trace level in simulated deep groundwater by Q ICP-MS using extraction chromatography. Talanta 106:1–7

    Article  CAS  Google Scholar 

  26. Eichrom Technologies, Inc. (2003) Analytical procedures NIW01, nickel 63/59 in water, Feb 25

  27. Fisera O, Sebesta F (2010) Determination of 59Ni in radioactive waste. J Radioanal Nucl Chem 286:713–717

    Article  CAS  Google Scholar 

  28. Smith RM, Martell AE (1973) In critical stability constants, Plenum Press, New York

  29. International Atomic Energy Agency (2009) Determination and use of scaling factors for waste characterization in nuclear power plants. AIEA, Nuclear Energy Series NW-T-1.18

  30. Fréchou C, Degros JP (2006) Radiological inventory of irradiated graphite samples. J Radioanal Nucl Chem 273:677–681

    Article  Google Scholar 

  31. Banford AW, Eccles H, Graves MJ, von Lensa W, Norris S (2008) Carbowaste—an integrated approach to irradiated graphite. Nucl Future 4:1–5

    Google Scholar 

  32. AFNOR Standard NF M60-323 (2011) Nuclear energy—nuclear fuel cycle technology—waste—guide for pre-analysis dissolution of effluents, waste and embedding matrices. Association Française de Normalisation, Paris, France

  33. AFNOR Standard NF M60-322 (2005) Nuclear energy—nuclear fuel cycle technology—waste—determination of iron 55 activity in effluents and waste by liquid scintillation after prior chemical separation

  34. Marczenko Z, Balcerzak M (2000) In: separation, preconcentration and spectrophotometry in inorganic analysis. Elsevier, Amsterdam

    Google Scholar 

  35. Zelenin OY (2007) Interaction of the Ni2+ ion with citric acid in an aqueous solution. Russ J Coord Chem 33:346–350

    Article  CAS  Google Scholar 

  36. Dyrssen D, Krašovek F, Sillén LG (1959) On the complex formation of nickel with dimethylglyoxime. Acta Chem Scand 13:50–59

    Article  CAS  Google Scholar 

  37. Standard NF EN ISO/CEI 17043 (2010) General requirements for proficiency testing. Association Française de Normalisation, Paris, France

Download references

Acknowledgments

The authors thank the organizing committees of 17th RadChem and ERA12 conferences for allowing the oral presentations of this work. They also thank Thomas Grangeon and Julien Roger for the measurements by gamma spectrometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Gautier.

Additional information

Cécile Garcia its on leave for AREVA, Demantelement et Services/MSIS Assistance, 91196 Gif-sur-Yvette Cedex, France

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautier, C., Colin, C. & Garcia, C. A comparative study using liquid scintillation counting to determine 63Ni in low and intermediate level radioactive waste. J Radioanal Nucl Chem 308, 261–270 (2016). https://doi.org/10.1007/s10967-015-4301-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4301-4

Keywords

Navigation