Skip to main content
Log in

Thorium removal from weakly acidic solutions using titan yellow-impregnated XAD-7 resin beads: kinetics, equilibrium and thermodynamic studies

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

To remove Th(IV) ion from acidic solutions (pH 2.5–2.7), an extractant-impregnated resin (EIR) was fabricated by impregnation of Ambelite XAD-7 resin beads with titan yellow as extractant. Various physicochemical factors such as pH, contact time, temperature, sorbent dose and initial concentration of thorium were investigated. The isotherm data was well interpreted by the Langmuir model. Kinetic experiments data showed that the sorption process could be described by Weber–Morris kinetic model. Thermodynamic studies revealed the feasibility, spontaneity and endothermic nature of sorption process. Desorption experiments showed that the EIR could be reused without significant losses of its initial capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ARE:

Average relative error (%)

B :

Tempkin constant related to the heat of sorption

b:

Langmuir constant related to the free energy of sorption (L mg−1)

b M :

Langmuir constant related to the free energy of sorption (L mol−1)

C :

Intial concentration of thorium ion in solution

C e :

Equilibrium concentration of the metal ion in the bulk solution (mg L−1)

C r :

Total concentration of the exchangeable ion in resin phase

D b :

Diffusion coefficient in the solution bulk

D b :

Intra-particle diffusion coefficient (m2 s−1)

E :

Mean sorption energy estimated from Dubinin–Radushkevich (J mol−1)

k 1 :

Pseudo-first order rate constant (min−1)

k 2 :

Pseudo-second order rate constant (g mg−1 min−1)

K d :

Distribution coefficient (mL g−1)

K f :

Freundlich constant indicative of the relative sorption capacity of the EIR (mg1−(1/n) L1/n g−1)

K id :

Intra-particle diffusion constant (mg g−1 min−1/2)

K T :

Equilibrium binding constant, Tempkin constant (L g−1)

I :

Intercept in the intraparticle diffusion model (mg g−1)

m :

EIR dose, weight of EIR per liter of solution (g L−1)

N :

Number of measurements

n :

Freundlich constant indicative of the heterogeneity factor

q 0 :

Maximum sorption capacity based on Dubinin–Radushkevich model (mol g−1)

q e :

Amount of metal ion sorbed per unit weight of EIR at equilibrium (mg g−1)

q e.cal :

Theoretical q e values obtained from the kinetic or isotherm models (mg g−1)

q e.exp :

Experimental q e values (mg g−1)

q max :

Maximum sorption capacity; Langmuir constant (mg g−1)

q max,exp :

Maximum experimental sorption capacity (mg g−1)

q t :

Amount of metal ion sorbed at any time t (mg g−1)

R :

Universal gas constant (J mol−1 K−1)

R 2 :

Correlation coefficient

r 0 :

Mean radius of the EIR particles (m)

R%:

Removal efficiency (%)

R L :

Dimensionless separation factor

RMSE:

Root mean square error (%)

T :

Temperature (K)

t :

Time (min)

V :

Solution volume (L or mL)

W :

Weight of EIR (mg)

X t :

Degree of fractional attainment to equilibrium at time t

ΔG°:

Gibb’s free energy change (J mol−1)

H°:

Enthalpy change (J mol−1)

S°:

Entropy change (J mol−1 K−1)

Δq % :

Normalized standard deviation (%)

α :

Elovich constant indicative of the initial sorption rate (mg g−1 min−1)

β :

Elovich constant indicative of the desorption constant (g mg−1)

δ :

Dubinin–Radushkevich constant related to the sorption energy (mol2 J−2)

ε :

Polanyi potential

ω :

Thickness of the liquid film surrounding the sorbent beads

References

  1. Pathak SK, Tripathi SC, Singh KK, Mahtele AK, Kumar M, Gandhi PM (2014) Removal of americium from aqueous nitrate solutions by sorption onto PC88A—Impregnated macroporous polymeric beads. J Hazard Mater 278:464–473

    Article  CAS  Google Scholar 

  2. Xu QH, Pan DQ, Wu WS (2015) Effects of pH, ionic strength, humic substances and temperature on Th(IV) sorption onto ZSM-5. J Radioanal Nucl Chem 305:535–541

    Article  CAS  Google Scholar 

  3. Akkaya R (2013) Removal of radioactive elements from aqueous solutions by adsorption onto polyacrylamide–expanded perlite: equilibrium, kinetic, and thermodynamic study. Desalination 321:3–8

    Article  CAS  Google Scholar 

  4. Ghaedi AM, Ghaedi M, Vafaei A, Iravani N, Keshavarz M, Rad M, Tyagi I, Agarwal S, Gupta VK (2015) Adsorption of copper (II) using modified activated carbon prepared from Pomegranate wood: optimization by bee algorithm and response surface methodology. J Mol Liq 206:195–206

    Article  CAS  Google Scholar 

  5. Hosseini MS, Abedi F (2015) Comparison of adsorption behavior of Th(IV) and U(VI) on mixed-ligands impregnated resin containing antraquinones with that conventional one. J Radioanal Nucl Chem 303:2173–2183

    Article  CAS  Google Scholar 

  6. Kaynar ÜH, Ayvacıklı M, Hiçsönmez Ü, Kaynar SÇ (2015) Removal of thorium (IV) ions from aqueous solution by a novel nanoporous ZnO: isotherms, kinetic and thermodynamic studies. J Environ Radioact 150:145–151

    Article  CAS  Google Scholar 

  7. Kim JO, Lee SM, Jeon C (2014) Adsorption characteristics of sericite for cesium ions from an aqueous solution. Chem Eng Res Des 92:367–384

    Google Scholar 

  8. Lin P, Chen M, Guo L (2015) Effect of natural organic matter on the adsorption and fractionation of thorium and protactinium on nanoparticles in seawater. Mar Chem 173:291–301

    Article  CAS  Google Scholar 

  9. Zeng Y, Liao X, He Q, Shi B (2009) Recovery of Th(IV) from aqueous solution by reassembled collagen-tannin fiber adsorbent. J Radioanal Nucl Chem 280:91–98

    Article  CAS  Google Scholar 

  10. Shehata FA, Attallah MF, Borai EH, Hilal MA, Abo-Aly MM (2010) Sorption reaction mechanism of some hazardous radionuclides from mixed waste by impregnated crown ether onto polymeric resin. Appl Radiat Isot 68:239–249

    Article  CAS  Google Scholar 

  11. Ilaiyaraja P, Singha Deb AK, Sivasubramanian K, Ponraju D, Venkatraman B (2013) Removal of thorium from aqueous solution by adsorption using PAMAM dendron-functionalized styrene divinyl benzene. J Radioanal Nucl Chem 297:59–69

    Article  CAS  Google Scholar 

  12. Cortina JL, Arad-Yelling R, Miralles N, Saster AM, Warshawsky A (1998) Kinetics studies on heavy metal ions extraction by Amberlite XAD2 impregnated resins containing a bifunctional organophosphorous extractant. React Funct Polym 38:269–278

    Article  CAS  Google Scholar 

  13. Hosseini-Bandegharaei A, Hosseini MS, Sarw-Ghadi M, Zowghi S, Hosseini E, Hosseini-Bandegharaei H (2010) Kinetics, equilibrium and thermodynamic study of Cr(VI) sorption into toluidine blue o-impregnated XAD-7 resin beads and its application for the treatment of wastewaters containing Cr(VI). Chem Eng J 160:190–198

    Article  CAS  Google Scholar 

  14. Ali A, Shahida Sh, Haleem Kha M, Mufazzal Saeed M (2011) Online thorium determination after preconcentration in a minicolumn having XAD-4 resin impregnated with N-benzoylphenylhydroxylamine by FI-spectrophotometry. J Radioanal Nucl Chem 288:735–743

    Article  CAS  Google Scholar 

  15. Hosseini SH, Rahmani-Sani A, Jalalabadi Y, Karimzadeh M, Hosseini-Bandegharaei A, Kharghani K, Allahabadi A (2015) Preconcentration and determination of ultra-trace amounts of U(VI) and Th(IV) using titan yellow-impregnated Amberlite XAD-7 resin. Intern J Environ Anal Chem 95:277–290

    Article  CAS  Google Scholar 

  16. Ghasemi JB, Zolfonoun E (2010) Simultaneous spectrophotometric determination of trace amounts of uranium, thorium, and zirconium using the partial least squares method after their preconcentration by α-benzoin oxime modified Amberlite XAD-2000 resin. Talanta 80:1191–1197

    Article  CAS  Google Scholar 

  17. Saha B, Gill RJ, Bailey DG, Kabay N, Arda M (2004) Sorption of Cr(VI) from aqueous solution by Amberlite XAD-7 resin impregnated with Aliquat 336. React Funct Polym 60:223–244

    Article  CAS  Google Scholar 

  18. Negrea A, Popa A, Ciopec M, Lupa L, Negrea P, Davidescu CM, Motoc M, Mînzatu V (2014) Phosphonium grafted styrene–divinylbenzene resins impregnated with iron(III) and crown ethers for arsenic removal. Pure Appl Chem 86:1729–1740

    Article  CAS  Google Scholar 

  19. Erdogan S, Merdivan M, Hamamci C, Akba O, Baysal A (2004) Polymer supported humic acid for separation and preconcentration of Th(IV). Anal Lett 37:2565–2575

    Article  CAS  Google Scholar 

  20. Metilda P, Sanghamitra K, Gladis JM, Naidu GRK, Lao TP (2005) Amberlite XAD-4 functionalized with succinic acid for the solid phase extractive preconcentration and separation of U(VI). Talanta 65:192–200

    CAS  Google Scholar 

  21. Rahmani-Sani A, Hosseini-Bandegharaei A, Hosseini SH, Kharghani K, Zarei H, Rastegar A (2015) Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid. J Hazard Mater 286:152–163

    Article  CAS  Google Scholar 

  22. Ciopec M, Davidescu CM, Negrea A, Grozav I, Lupa L, Negrea P, Popa A (2012) Adsorption studies of Cr(III) ions from aqueous solutions by DEHPA impregnated onto Amberlite XAD7—factorial design analysis. Chem Eng Res Des 90:1660–1670

    Article  CAS  Google Scholar 

  23. Ghaedi M, Niknam K, Taheri K, Hossainian H, Soylak M (2010) Flame atomic absorption spectrometric determination of copper, zinc and manganese after solid-phase extraction using 2,6-dichlorophenyl-3,3-bis(indolyl)methane loaded on Amberlite XAD-16. Food Chem Toxicol 48:891–897

    Article  CAS  Google Scholar 

  24. Hosseini-Bandegharaei A, Sarwghadi M, Heydarbeigi A, Hosseini SH, Nedaie M (2013) Solid-phase extraction of trace amounts of Uranium(VI) in environmental water samples using an extractant-impregnated resin followed by detection with UV–Vis Spectrophotometry. J Chem 2013:1–10

    Article  Google Scholar 

  25. Draa MT, Belaid T, Benamor M (2004) Extraction of Pb(II) by XAD7 impregnated resins with organophosphorus extractants (DEHPA, IONQUEST 801, CYANEX 272). Sep Purif Technol 40:77–86

    Article  CAS  Google Scholar 

  26. Hosseini MS, Hosseini-Bandegharaei A (2010) Selective extraction of Th(IV) over U(VI) and other co-existing ions using eosin B-impregnated Amberlite IRA-410 resin beads. J Radional Nucl Chem 283:23–30

    Article  CAS  Google Scholar 

  27. Hosseini-Bandegharaei A, Karimzadeh M, Sarwghadi M, Heydarbeigi A, Hosseini SH, Nedaie M, Shoghi H (2014) Use of a selective extractant-impregnated resin for removal of Pb(II) ion from waters and wastewaters: kinetics, equilibrium and thermodynamic study. Chem Eng Res Des 92:581–591

    Article  CAS  Google Scholar 

  28. Rao GPC, Veni SS, Pratap K, Rao YK, Seshaiah K (2006) Solid phase extraction of trace metals in seawater using morpholine dithiocarbamate-loaded Amberlite XAD-4 and determination by ICP-AES. Anal Lett 39:1009–1021

    Article  CAS  Google Scholar 

  29. Kabay N, Cortina JL, Trochimczuk A, Streat M (2010) Solvent-impregnated resins (SIRs)—methods of preparation and their applications. React Funct Polym 70:484–496

    Article  CAS  Google Scholar 

  30. Otto EB, Otto CE (1941) Titan yellow qualitative test for magnesium. Ind Eng Chem Anal Ed 13:65–66

    Article  CAS  Google Scholar 

  31. El-Kamash AM, Zaki AA, Abdel M, Geleel E (2005) Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite. J Hazard Mater B 127:211–220

    Article  CAS  Google Scholar 

  32. Allen SJ, Mckay G, Porter JF (2004) Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J Colloid Interface Sci 280:322–333

    Article  CAS  Google Scholar 

  33. Kumar M, Rathore DPS, Singh AK (2000) Metal ion enrichment with Amberlite XAD-2 functionalized with Tiron: analytical applications. Analyst 125:1221–1226

    Article  CAS  Google Scholar 

  34. Negrea A, Ciopec M, Lupa L, Davidescu CM, Popa A, Ilia G, Negrea P (2011) Removal of AsV by FeIII-Loaded XAD7 Impregnated Resin Containing Di(2-ethylhexyl) Phosphoric Acid (DEHPA): equilibrium, Kinetic, and thermodynamic modeling studies. J Chem Eng Data 56:3830–3838

    Article  CAS  Google Scholar 

  35. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  36. Freundlich H (1906) Adsorption in solution. Phys Chem Soc 40:1361–1368

    Google Scholar 

  37. Tempkin MJ, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim URSS 12:217–222

    Google Scholar 

  38. Hutson ND, Yang RT (1997) Theoretical basis for the Dubinin–Radushkevitch (D–R) adsorption isotherm equation. Adsorption 3:189–195

    Article  CAS  Google Scholar 

  39. Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X, Wang X (2014) Synthesis of amidoxime-functionalized Fe3O4@ SiO2 core–shell magnetic microspheres for highly efficient sorption of U (VI). Chem Eng J 235:275–283

    Article  CAS  Google Scholar 

  40. Nilchi A, Shariati Dehaghan T, Rasouli Garmarodi S (2013) Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles. Desalination 321:67–71

    Article  CAS  Google Scholar 

  41. Humelnicu D, Drochioiu G, Sturza MI, Cecal A, Popa K (2006) Kinetic and thermodynamic aspects of U(VI) and Th(IV) sorption on a zeolitic volcanic tuff. J Radioanal Nucl Chem 270:637–640

    Article  CAS  Google Scholar 

  42. Shao D, Hou G, Li J, Wen T, Ren X, Wang X (2014) PANI/GO as a super adsorbent for the selective adsorption of uranium(VI). Chem Eng J 255:604–612

    Article  CAS  Google Scholar 

  43. Khazaei Y, Faghihian H, Kamali M (2011) Removal of thorium from aqueous solutions by sodium clinoptilolite. J Radioanal Nucl Chem 289:529–536

    Article  CAS  Google Scholar 

  44. Zhang Z-B, Zhou Y-D, Liu YH, Cao X-H, Zhou Z-W, Han B, Liang P, Xiong G-X (2015) Removal of thorium from aqueous solution by ordered mesoporous carbon CMK-3. J Radioanal Nucl Chem 302:9–16

    Article  Google Scholar 

  45. Talip Z, Eral M, Hiçsönmez Ü (2009) Adsorption of thorium from aqueous solutions by perlite. J Environ Radioact 100:139–143

    Article  CAS  Google Scholar 

  46. Chandramouleeswaran S, Ramkumar J (2014) n-Benzoyl-n-phenylhydroxylamine impregnated Amberlite XAD-4 beads for selective removal of thorium. J Hazard Mater 280:514–523

    Article  CAS  Google Scholar 

  47. Abbasizadeh S, Keshtkar AR, Mousavian MA (2013) Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium(VI) and thorium(IV) removal from aqueous solution. Chem Eng J 220:161–171

    Article  CAS  Google Scholar 

  48. Anirudhan TS, Rijith S, Tharun AR (2010) Adsorptive removal of thorium(IV) from aqueous solutions using poly(methacrylic acid)-grafted chitosan/bentonite composite matrix: process design and equilibrium studies. Colloid Surf A 368:13–22

    Article  CAS  Google Scholar 

  49. Anirudhan TS, Sreekumari SS, Jalajamony S (2013) An investigation into the adsorption of thorium(IV) from aqueous solutions by a carboxylate-functionalised graft copolymer derived from titanium dioxide-densified cellulose. J Environ Radioact 116:141–147

    Article  CAS  Google Scholar 

  50. Anirudhan TS, Rejeena SR (2011) Thorium(IV) temoval and recovery from aqueous solutions using Tannin-modified poly(glycidylmethacrylate)-grafted zirconium oxide densified cellulose. Ind Eng Chem Res 50:13288–13298

    Article  CAS  Google Scholar 

  51. Riazi Ma Keshtkar AR, Moosavian MA (2014) Batch and continuous fixed-bed column biosorption of thorium(IV) from aqueous solutions: equilibrium and dynamic modeling. J Radioanal Nucl Chem 301:493–503

    Article  Google Scholar 

  52. Sharma S, Balasubramanian K (2015) Molecularly imprinted and nanoengineered camphor soot functionalized PAN-nanofibers for effluent treatment. RSC Adv 5:31732–31741

    Article  CAS  Google Scholar 

  53. Lagergren S, Svenska BK (1989) Zur theorie der sogenannten adsorption geloester stoffe. Veternskapsakad Handlingar 24:1–39

    Google Scholar 

  54. Ho YS, Ng JCY, McKay G (2000) Kinetics of pollutant sorption by biosorbents: review. Sep Purif Method 29:189–232

    Article  CAS  Google Scholar 

  55. Yang X, Al-Duri B (2005) Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. J Colloid Interface Sci 287:25–34

    Article  CAS  Google Scholar 

  56. Juang RS, Chen ML (1997) Application of the Elovich equation to the kinetics of metal sorption with solvent-impregnated resins. Ind Eng Chem Res 36:813–820

    Article  CAS  Google Scholar 

  57. Chein SH, Clayton WR (1980) Application of elovich equation to the biomass of phosphate release and sorption on soil. Soil Sci Soc Am J 44:265–268

    Article  Google Scholar 

  58. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng 89:31–60

    Google Scholar 

  59. Malash GF, El-Khaiary MI (2010) Piecewise linear regression: a statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models. Chem Eng J 163:256–263

    Article  CAS  Google Scholar 

  60. Weber TW, Chakraborti RK (1974) Pore and solid diffusion models for fixed bed adsorbents. J Am Inst Chem Eng 20:228–238

    Article  CAS  Google Scholar 

  61. Akkaya R (2012) Separation of uranium and thorium in aqueous solution using polyhydroxyethylmethacrylate-hydroxyapatite novel composite. Desalin Water Treat 50:180–188

    Article  CAS  Google Scholar 

  62. Yusan S, Gok C, Erenturk S, Aytas S (2012) Adsorptive removal of thorium (IV) using calcined and flux calcined diatomite from Turkey: evaluation of equilibrium, kinetic and thermodynamic data. Appl Clay Sci 67–68:106–116

    Article  Google Scholar 

  63. Abdel Raouf MW, El-Kamash AM (2005) Kinetic and thermodynamic studies for sorption of uranium and thorium ions from nitric acid solutions on to a TBP-impregnated sorbent. Arab J Nucl Sci Appl 38:85–96

    Google Scholar 

  64. Banerjee GL, Amy M, Prevost S, Nour M, Jekel PM, Blumenschein CD (2008) Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide. Water Res 42:3371–3378

    Article  CAS  Google Scholar 

  65. Michelson LD, Gideon PG, Pace EG, Kutal LH (1975) Removal of soluble mercury from wastewater by complexing technique. In: Bull. No. 74. US Department Industry, Office of Water Research and Technology. Blacksburg

  66. Ghodbane I, Hamdaoui O (2008) Removal of mercury(II) from aqueous media using eucalyptus bark: kinetic and equilibrium studies. J Hazard Mater 160:301–309

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of the present work from the Central Research Council of Sabzevar University of Medical Sciences (Grant 3930101102). In addition, the authors wish to take this opportunity to express their sincere thanks to Prof. Mohammad Mohammad–Zadeh, the research council president of Sabzevar University of medical Science, for his great helps and supports during the experimental works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Hosseini-Bandegharaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini-Bandegharaei, A., Allahabadi, A., Rahmani-Sani, A. et al. Thorium removal from weakly acidic solutions using titan yellow-impregnated XAD-7 resin beads: kinetics, equilibrium and thermodynamic studies. J Radioanal Nucl Chem 309, 761–776 (2016). https://doi.org/10.1007/s10967-015-4689-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4689-x

Keywords

Navigation