Skip to main content
Log in

Study on effect of process parameters and mixing on morphology of ammonium diuranate

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Ammonium diuranate (ADU) is an important intermediate for the production of uranium base fuel. Controlling morphology of crystalline ADU powders is very important as it is retained by its subsequent products. Because of the high level of supersaturation, the involved mechanisms of precipitation like primary nucleation, crystal growth, aggregation and breakage occur simultaneously and they control the morphology. Effects of concentration of uranyl nitrate solution, temperature and the mixing intensity have been investigated on the morphology, crystal structure and the other physical properties of ADU. Effect of temperature is found to be more dominant for controlling morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cheng J, Yang C, Mao ZS, Zhao C (2009) CFD modeling of nucleation, growth, aggregation, and breakage in continuous precipitation of barium sulfate in a stirred tank. Ind Eng Chem Res 48:6992–7003

    Article  CAS  Google Scholar 

  2. Mullin JW (2001) Crystallization. Butterworth-Heinemann, Oxford

    Google Scholar 

  3. Jones AG (2002) Crystallization process systems. Butterworth-Heinemann, Oxford

    Google Scholar 

  4. Tung HH (2013) Industrial perspectives of pharmaceutical crystallization. Org Process Res Dev 17:445–454

    Article  CAS  Google Scholar 

  5. Rane CV, Kalekudithi E, Joshi JB, Ramkrishna D (2014) Effect of impeller design and power consumption on crystal size distribution. AIChE J 60(10):3596–3613

    Article  CAS  Google Scholar 

  6. Rane CV, Ganguli AA, Kalekudithi E, Patil RB, Joshi JB, Ramkrishna D (2014) CFD simulation and comparison of industrial crystallizers. Can J Chem Eng 92:2138–2156

    Article  CAS  Google Scholar 

  7. Hoyt RC (1978) Precipitation kinetics of a continuous precipitator, with application to the precipitation of ammonium polyuranate. Retrospective Theses and Dissertations. Paper 6459

  8. Woolfrey JL (1978) The preperation of UO2 powder: effect of ammonium uranate properties. J Nucl Mater 74:123–131

    Article  CAS  Google Scholar 

  9. Manna S, Karthik P, Mukherjee A, Banerjee J, Roy SB, Joshi JB (2012) Study of calcinations of ammonium diuranate at different temperatures. J Nucl Mater 426:229–232

    Article  CAS  Google Scholar 

  10. Doi H, Ito T (1964) Significance of physical state of starting precipitate in growth of uranium dioxide particle. J Nucl Mater 1:94–106

    Article  Google Scholar 

  11. Manna S, Roy SB, Joshi JB (2012) Study of crystallization and morphology of ammonium diuranate and uranium oxide. J Nucl Mater 424:94–100

    Article  CAS  Google Scholar 

  12. Janov JJ, Alfredson PG, Vilkaitis VK (1972) The influence of precipitation conditions on the properties of ammonium diuranate and uranium dioxide powders. J Nucl Mater 44:161–174

    Article  CAS  Google Scholar 

  13. Steeper TJ, Zink JC (1974) Particle size distribution of ammonium diuranate precipitate. Proc Okha Acad Sci 54:83–87

    CAS  Google Scholar 

  14. Narsimha BM, Balakrishna P, Yadav RB, Ganguly C (2001) Influence of temperature of precipitation on agglomeration and other powder characteristics of ammonium di-uranate. Powder Technol 115:167–183

    Article  Google Scholar 

  15. Das MS, Krishnamoorthy TS, Ravindran PV, Mahadevan N Unpublished internal report of BARC, DAE

  16. Wei H, Garside J (1997) Application of CFD modelling to precipitation systems. Trans IChemE 75:219–227

    Article  CAS  Google Scholar 

  17. Rashed MHA, Jones AG (1999) CFD modelling of gas liquid reactive precipitation. Chem Eng Sci 54:4779–4784

    Article  Google Scholar 

  18. Garside J, Wei H (1997) Pumped, stirred and maybe precipitated: simulation of precipitation processes using CFD. Acta Polytech Scand Chem Technol Metall Ser 244:9–15

    CAS  Google Scholar 

  19. Baldyga J, Orciuch W (2001) Barium sulphate precipitation in a pipe-an experimental study and CFD modelling. Chem Eng Sci 56(7):2435–2444

    Article  CAS  Google Scholar 

  20. Marchisio DL, Barresi AA, Fox RO (2001) Simulation of turbulent precipitation in a semi-batch Taylor-Couette reactor using CFD. AIChE J 147(3):664–676

    Article  Google Scholar 

  21. Marchisio DL, Fox RO, Barresi AA, Garbero M, Baldi G (2001) On the simulation of turbulent precipitation in a tubular reactor via computational fluid dynamics (CFD). Trans IChemE 79:998–1004

    Article  CAS  Google Scholar 

  22. Marchisio DL, Barresi AA (2003) CFD simulation of mixing and reaction: the relevance of the micro-mixing model Chem. Eng Sci 58:3579–3587

    Article  CAS  Google Scholar 

  23. Ranade VV, Joshi JB (1989) Flow generated by pitched bladed turbine Part I: experimental Chem. Eng Commun 81:197–224

    Article  CAS  Google Scholar 

  24. Ranade VV, Joshi JB, Marathe AG (1989) Flow generated by pitched bladed turbine Part II: mathematical modelling and comparison with experimental data. Chem Eng Commun 81:225–248

    Article  CAS  Google Scholar 

  25. Ranade VV, Joshi JB (1990) Flow generated by a disc turbine I: experimental. Trans Inst Chem Eng (UK) A 68:19–33

    CAS  Google Scholar 

  26. Ranade VV, Joshi JB (1990) Flow generated by a disc turbine II: mathematical Model. Trans Inst Chem Eng (UK) A 68:34–50

    CAS  Google Scholar 

  27. Kulkarni AA, Joshi JB, Ravikumar V, Kulkarni BD (2001) Application of multi-resolution analysis for simultaneous measurement of gas and liquid velocities and fractional gas hold-up in bubble column using LDA. Chem Eng Sci 56:5037–5048

    Article  CAS  Google Scholar 

  28. Kumaresan T, Joshi JB (2006) Effect of impeller design on the flow pattern and mixing in stirred tanks. Chem Eng J 115:173–193

    Article  CAS  Google Scholar 

  29. Murthy BN, Ghadge RS, Joshi JB (2007) CFD simulations of gas-liquid-solid stirred reactor: prediction of critical impeller speed for solid suspension. Chem Eng Sci 62:7184–7195

    Article  CAS  Google Scholar 

  30. Deshpande SS, Joshi JB, Kumar VR, Kulkarni BD (2008) Identification and characterization of flow structures in chemical process equipment using multi-resolution techniques. Chem Eng Sci 63:5330–5346

    Article  CAS  Google Scholar 

  31. Tabib MV, Joshi JB (2008) Analysis of dominant flow structures and their flow dynamics in industrially relevant equipment using proper orthogonal decomposition. Chem Eng Sci 63:3695–3715

    Article  CAS  Google Scholar 

  32. Mathpati CS, Tabib MV, Deshpande SS, Joshi JB (2009) Dynamics of flow structures and transport phenomena-2: relationship with design objectives and design optimization. Ind Eng Chem Res 48:8285–8311

    Article  CAS  Google Scholar 

  33. Joshi JB, Tabib MV, Deshpande SS, Mathpati CS (2009) Dynamics of flow structures and transport phenomena-1: experimental and numerical techniques for identification and energy content of flow structures. Ind Eng Chem Res 48:8244–8284

    Article  CAS  Google Scholar 

  34. Joshi JB, Nere NK, Rane CV, Murthy BN, Mathpati CS, Patwardhan AW, Ranade VV (2011) CFD simulation of stirred tanks: comparison of turbulence models. Part II: radial flow impellers. Can J Chem Eng 89:23–82

    Article  CAS  Google Scholar 

  35. Joshi JB, Nere NK, Rane CV, Murthy BN, Mathpati CS, Patwardhan AW, Ranade VV (2011) CFD simulation of stirred tanks: comparison of turbulence models Part II: axial flow impellers, multiple impellers and multiphase dispersions. Can J Chem Eng 89:754–816

    Article  CAS  Google Scholar 

  36. Leeuwen MLJ, Bruinsma OSL, Rosmalen GMV (1996) Influence of mixing on the product quality in precipitation. Chem Eng Sci 51(11):2595–2600

    Article  Google Scholar 

  37. Wong DY, Jaworski Z, Nienow AW (2001) Effect of ion excess on particle size and morphology during barium sulphate precipitation: an experimental study. Chem Eng Sci 56:727–734

    Article  CAS  Google Scholar 

  38. Pohorecki R, Baldyga J (1983) The use of a new model of micromixing for determination of crystal size in precipitation. Chem Eng Sci 38:79–83

    Article  CAS  Google Scholar 

  39. Tosun G (1988) An experimental study of the effect of mixing on the particle size distribution in BaSO4 precipitation reaction. Proc Eur Conf Mixing Pavia Italy 161:161–170

    Google Scholar 

  40. Fitchett DE, Tarbell JM (1990) Effect of Mixing on the precipitation of Barium Sulfate in an MSMPR reactor. AIChE J 36:511–522

    Article  CAS  Google Scholar 

  41. Wei H, Zhou W, Garside J (2001) Computational fluid dynamics modelling of the precipitation process in a Semibatch Crystallizer. Ind Eng Chem Res 40:5255–5261

    Article  CAS  Google Scholar 

  42. Jaworski Z, Nienow AW (2003) CFD modelling of continuous precipitation of barium sulphate in a stirred tank. Chem Eng J 91:167–174

    Article  CAS  Google Scholar 

  43. Zheng W, Zaisha M, Chao Y, Xiangqian S (2006) Computational fluid dynamics approach to the effect of mixing and draft tube on the precipitation of barium sulfate in a continuous stirred tank. Chinese J Chem Eng 14(6):713–722

    Article  Google Scholar 

  44. Kamyabia MM, Hashemipourb H, Kamyabib S (2012) CFD modeling of barium sulfate nano particles crystallization in a tank reactor by using population balance equations, Proceedings of the 4th international conference on nanostructures (ICNS4) 12–14 March, Kish Island

  45. Aslund BL, Rasmuson AC (1992) Semi batch reaction crystallization of benzoic acid. AIChE J 38(3):328–342

    Article  Google Scholar 

  46. Rousseaux JM, Vial C, Muhr H, Plasari E (2001) CFD simulation of precipitation in the sliding-surface mixing device. Chem Eng Sci 56:1677–1685

    Article  CAS  Google Scholar 

  47. Manna S, Thakkar UR, Satpati SK, Roy SB, Joshi JB, Chakravartty JK (2016) Study of crystal growth and effect of temperature and mixing on properties of sodium diuranate. Prog Nucl Eng 91:132–139

    Article  CAS  Google Scholar 

  48. Debets PC, Loopstra BO (1963) On the Uranates of Ammonium-II X-ray investigation of the compounds in the system NH3–UO2–H2O. J Inog Nucl Chem 25:945–953

    Article  CAS  Google Scholar 

  49. Murthy BN, Joshi JB (2008) Assessment of standard k–ε, RSM and LES turbulence models in a baffled stirred vessel agitated by various impeller designs. Chem Eng Sci 63:5468–5495

    Article  CAS  Google Scholar 

  50. Rewatkar VB, Rao KSMSR, Joshi JB (1990) Power consumption in mechanically agitated contactors using pitched bladed turbine impellers. Chem Eng Commun 88:69–90

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Shri S. K. Satpati, Shri K. N. Hareendran, Shri R. Kumar and Smt. K. Mitra of UED, BARC for their kind guidance and support to carry out the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhankar Manna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manna, S., Basak, C., Thakkar, U.R. et al. Study on effect of process parameters and mixing on morphology of ammonium diuranate. J Radioanal Nucl Chem 310, 287–299 (2016). https://doi.org/10.1007/s10967-016-4883-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4883-5

Keywords

Navigation