Skip to main content
Log in

Simultaneous removal and recovery of uranium from aqueous solution using TiO2 photoelectrochemical reduction method

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

U(VI)-containing wastewater has potential radiation hazard to the environment, but contains valuable uranium resource. Based on the reduction of U(VI) and the difference in solubility between U(VI) and U(IV), here we construct a TiO2-based photoelectrochemical cell to remove U(VI) and recover uranium from aqueous solution. By irradiating TiO2 photoanode at E = 0.45 V versus SCE, U(VI) can be simultaneously removed from aqueous solution and recovered as solid uranium compounds on a FTO glass cathode. Since ethanol can act as hole scavenger to protect the formed U(IV) and provide CO −·2 as reductant, ethanol adding improved the U(VI) reduction efficiency of TiO2-based photoelectrochemical cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leggett RW (1989) The behavior and chemical toxicity of U in the kidney: a reassessment. Health Phys 57:365–383

    Article  CAS  Google Scholar 

  2. Domingo JL (2001) Reproductive and developmental toxicity of natural and depleted uranium: a review. Reprod Toxicol 15:603–609

    Article  CAS  Google Scholar 

  3. Sessler JL, Melfi PJ, Pantos GD (2006) Uranium complexes of multidentate N-donor ligands. Coord Chem Rev 250:816–843

    Article  CAS  Google Scholar 

  4. Yang J, Volesky B (1999) Biosorption of uranium on Sargassum biomass. Water Res 33:3357–3363

    Article  CAS  Google Scholar 

  5. Sharma P, Tomar R (2008) Synthesis and application of an analogue of mesolite for the removal of uranium(VI), thorium(IV), and europium(III) from aqueous waste. Microporous Mesoporous Mater 116:641–652

    Article  CAS  Google Scholar 

  6. Xie S, Yang J, Chen C, Zhang X, Wang Q, Zhang C (2008) Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. J Environ Radioact 99:126–133

    Article  CAS  Google Scholar 

  7. Shuibo X, Chun Z, Xinghuo Z, Jing Y, Xiaojian Z, Jingsong W (2009) Removal of uranium(VI) from aqueous solution by adsorption of hematite. J Environ Radioact 100:162–166

    Article  Google Scholar 

  8. Ozay O, Ekici S, Aktas N, Sahiner N (2011) P(4-vinyl pyridine) hydrogel use for the removal of UO2 2+ and Th4+ from aqueous environments. J Environ Manag 92:3121–3129

    Article  CAS  Google Scholar 

  9. Abbasizadeh S, Keshtkar AR, Mousavian MA (2013) Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium(VI) and thorium(IV) removal from aqueous solution. Chem Eng J 220:161–171

    Article  CAS  Google Scholar 

  10. Sprynskyy M, Kovalchuk I, Buszewski B (2010) The separation of uranium ions by natural and modified diatomite from aqueous solution. J Hazard Mater 181:700–707

    Article  CAS  Google Scholar 

  11. Wang GH, Liu JS, Wang XG, Xie ZY, Deng NS (2009) Adsorption of uranium(VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058

    Article  CAS  Google Scholar 

  12. Wang GH, Wang XG, Chai XJ, Liu JS, Deng NS (2010) Adsorption of uranium(VI) from aqueous solution on calcined and acid-activated kaolin. Appl Clay Sci 47:448–451

    Article  CAS  Google Scholar 

  13. Ganesh R, Robinson KG, Chu L, Kucsmas D, Reed GD (1999) Reductive precipitation of uranium by Desulfovibrio desulfuricans: evaluation of cocontaminant effects and selective removal. Water Res 33:3447–3458

    Article  CAS  Google Scholar 

  14. Li X, Zhang M, Liu Y, Li X, Liu Y, Hua R, He C (2013) Removal of U(VI) in aqueous solution by nanoscale zero-valent iron(nZVI). Water Qual Expo Health 5:31–40

    Article  CAS  Google Scholar 

  15. Saito K, Uezu K, Hori T, Furusaki S, Sugo T, Okamoto J (1988) Recovery of uranium from seawater using amidoxime hollow fibers. AIChE J 34:411–416

    Article  CAS  Google Scholar 

  16. Kulkarni PS, Mukhopadhyay S, Ghosh SK (2009) Liquid membrane process for the selective recovery of uranium from industrial leach solutions. Ind Eng Chem Res 48:3118–3125

    Article  CAS  Google Scholar 

  17. Das S, Pandey AK, Athawale AA, Natarajan V, Manchanda VK (2012) Uranium preconcentration from seawater using phosphate functionalized poly(propylene) fibrous membrane. Desalin Water Treat 38:114–120

    Article  CAS  Google Scholar 

  18. Keshtkar AR, Irani M, Moosavian MA (2013) Removal of uranium(VI) from aqueous solutions by adsorption using a novel electrospun PVA/TEOS/APTES hybrid nanofiber membrane: comparison with casting PVA/TEOS/APTES hybrid membrane. J Radioanal Nucl Chem 295:563–571

    Article  CAS  Google Scholar 

  19. Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solution, vol 6. CRC Press, New York

    Google Scholar 

  20. Chen J, Ollis DF, Rulkens WH, Bruning H (1999) Photocatalyzed deposition and concentration of soluble uranium(VI) from TiO2 suspensions. Colloid Surf A 151:339–349

    Article  CAS  Google Scholar 

  21. Evans CJ, Nicholson GP, Faith DA, Kan MJ (2004) Photochemical removal of uranium from a phosphate waste solution. Green Chem 6:196–197

    Article  CAS  Google Scholar 

  22. Bonato M, Allen GC, Scott TB (2008) Reduction of U(VI) to U(IV) on the surface of TiO2 anatase nanotubes. Micro Nano Lett 3:57–61

    Article  CAS  Google Scholar 

  23. Wang G, Zhen J, Zhou L, Wu F, Deng N (2015) Adsorption and photocatalytic reduction of U(VI) in aqueous TiO2 suspensions enhanced with sodium formate. J Radioanal Nucl Chem 304:579–585

    Article  CAS  Google Scholar 

  24. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  25. Kouhnavard M, Ikeda S, Ludin NA, Khairudin NBA, Ghaffari BV, Mat-Teridi MA, Ibrahim MA, Sepeai S, Sopian K (2014) A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renew Sustain Energy Rev 37:397–407

    Article  CAS  Google Scholar 

  26. Li JT, Wu NQ (2015) Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal Sci Tech 5:1360–1384

    Article  CAS  Google Scholar 

  27. Kim YK, Lee S, Ryu J, Park H (2015) Solar conversion of seawater uranium(VI) using TiO2 electrodes. Appl Catal B 163:584–590

    Article  CAS  Google Scholar 

  28. He H, Berglund SP, Rettie AJE, Chemelewski WD, Xiao P, Zhang Y, Mullins CB (2014) Synthesis of BiVO4 nanoflake array films for photoelectrochemical water oxidation. J Mater Chem A 2:9371–9379

    Article  CAS  Google Scholar 

  29. Berglund SP, He H, Chemelewski WD, Celio H, Dolocan A, Mullins CB (2014) p-Si/W2C and p-Si/W2C/Pt photocathodes for the hydrogen evolution reaction. J Am Chem Soc 136:1535–1544

    Article  CAS  Google Scholar 

  30. Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Miner 85:543–556

    Article  CAS  Google Scholar 

  31. van der Meulen T, Mattson A, Österlund L (2007) A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase–rutile TiO2 nanoparticles: role of surface intermediates. J Catal 251:131–144

    Article  Google Scholar 

  32. Zhang X, Lin Y, He D, Zhang J, Fan Z, Xie T (2011) Interface junction at anatase/rutile in mixed-phase TiO2: formation and photo-generated charge carriers properties. Chem Phys Lett 504:71–75

    Article  CAS  Google Scholar 

  33. Lindström H, Rensmo H, Södergren S, Solbrand A, Lindquist S-E (1996) Electron transport properties in dye-sensitized nanoporous-nanocrystalline TiO2 films. J Phys Chem 100:3084–3088

    Article  Google Scholar 

  34. Su J, Guo L, Bao N, Grimes CA (2011) Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett 11:1928–1933

    Article  CAS  Google Scholar 

  35. He H, Berglund SP, Xiao P, Chemelewski WD, Zhang Y, Mullins CB (2013) Nanostructured Bi2S3/WO3 heterojunction films exhibiting enhanced photoelectrochemical performance. J Mater Chem A 1:12826–12834

    Article  CAS  Google Scholar 

  36. Becker A, Tobias H, Ze Porat, Mandler D (2008) Detection of uranium(VI) in aqueous solution by a calix [6] arene modified electrode. J Electroanal Chem 621:214–221

    Article  CAS  Google Scholar 

  37. Yuan K, Ilton ES, Antonio MR, Li Z, Cook PJ, Becker U (2015) Electrochemical and spectroscopic evidence on the one-electron reduction of U(VI) to U(V) on magnetite. Environ Sci Technol 49:6206–6213

    Article  CAS  Google Scholar 

  38. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  39. Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C 11(4):179–209

    Article  Google Scholar 

  40. Hoang S, Guo S, Hahn NT, Bard AJ, Mullins CB (2011) Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett 12:26–32

    Article  Google Scholar 

  41. Peper SM, Brodnax LF, Field SE, Zehnder RA, Valdez SN, Runde WH (2004) Kinetic study of the oxidative dissolution of UO2 in aqueous carbonate media. Ind Eng Chem Res 43:8188–8193

    Article  CAS  Google Scholar 

  42. Roth O, Jonsson M (2008) Oxidation of UO2 (s) in aqueous solution. Open Chem 6:1–14

    Article  CAS  Google Scholar 

  43. Odoh SO, Pan QJ, Shamov GA, Wang F, Fayek M, Schreckenbach G (2012) Theoretical study of the reduction of uranium(VI) aquo complexes on titania particles and by alcohols. Chem Eur J 18:7117–7127

    Article  CAS  Google Scholar 

  44. Schindler M, Hawthorne F, Freund M, Burns P (2009) XPS spectra of uranyl minerals and synthetic uranyl compounds. I: the U 4f spectrum. Geochim Cosmochim Ac 73:2471–2487

    Article  CAS  Google Scholar 

  45. Nguyen VNH, Amal R, Beydoun D (2003) Effect of formate and methanol on photoreduction/removal of toxic cadmium ions using TiO2 semiconductor as photocatalyst. Chem Eng Sci 58:4429–4439

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program: 2014CB846003), Applied Basic Research Programs of Science and Technology Department of Sichuan Province (2017JY0146), National Undergraduate Training Programs for Innovation and Entrepreneurship (201610619015), Science and Technology Program of Hebei Province (D2016403064, 16044601Z), Xinjiang Science Fund of Outstanding Young Scholars (15211121), China Postdoctoral Science Foundation funded project (2016M592698) and Cooperative Research Fund of Guangdong Provincial Key Laboratory of Mineral Physics and Materials (GLMPM-019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faqin Dong or Liang Bian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 702 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Zong, M., Dong, F. et al. Simultaneous removal and recovery of uranium from aqueous solution using TiO2 photoelectrochemical reduction method. J Radioanal Nucl Chem 313, 59–67 (2017). https://doi.org/10.1007/s10967-017-5278-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5278-y

Keywords

Navigation