Skip to main content
Log in

Liquid scintillation counting for determination of radionuclides in environmental and nuclear application

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Liquid scintillation counting (LSC) is a major technique not only for measurement of pure beta emitting radionuclides, but also radionuclides decay by electron capture and alpha emission. Although it is a conventional radiometric technique, but still a competitive techniques for the measurement of many radionuclides. This paper summaries the major development of this measurement technique in instrumentation, methodology and applications in the past decades. The progresses in the instrumentation and methodology mainly focus on the commercialization of triple-to-double coincidence ratio based LSC techniques and its application in the determination of different radionuclides. An overall review and discussion on the LSC based analytical methods for the determination of major radionuclides in environmental researches, decommissioning of nuclear faculties and nuclear application are presented, in both measurement techniques and sample preparation using radiochemical separation. Meanwhile the problems and challenges in the development and application of the LSC are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kossert K, Capogni M, Nähle OL (2014) Bilateral comparison between PTB and ENEA to check the performance of a commercial TDCR system for activity measurements. Appl Radiat Isot 93:38–44

    CAS  PubMed  Google Scholar 

  2. Kossert K (2010) Activity standardization by means of a new TDCR-Čerenkov counting technique. Appl Radiat Isot 68:1116–1120

    CAS  PubMed  Google Scholar 

  3. Eikenberg J, Beer H, Jaggi M (2014) Determination of 210Pb and 226Ra/228Ra in continental water using HIDEX 300SL LS-spectrometer with TDCR efficiency tracing and optimized alpha–beta discrimination. Appl Radiat Isot 93:64–69

    CAS  PubMed  Google Scholar 

  4. Priya S, Gopalakrishnan RK, Goswami A (2014) TDCR measurement of H-3, Ni-63 and Fe-55 using Hidex 300SL LSC device. J Radioanal Nucl Chem 302:353–359

    CAS  Google Scholar 

  5. Tarancon A, Bagan H, Garcia JF (2017) Plastic scintillators and related analytical procedures for radionuclide analysis. J Radioanal Nucl Chem 314:555–572

    CAS  Google Scholar 

  6. Barrera J, Tarancon A, Bagan H, Garcia F (2016) A new plastic scintillation resin for single-step separation, concentration and measurement of technetium-99. Anal Chim Acta 936:259–266

    CAS  PubMed  Google Scholar 

  7. Bagan H, Tarancon A, Rauret G, Carcia JF (2011) Radiostronium separation and measurement in a single step using plastic scintillators plus selective extractants. Application to aqueous sample analysis. Anal Chim Acta 686(1-2):50–56

    CAS  PubMed  Google Scholar 

  8. Lluch E, Barrera J, Tarancon A, Bagan H, Carcia JF (2016) Analysis of Pb-210 in water samples with plastic scintillation resin. Anal Chim Acta 940:38–45

    CAS  PubMed  Google Scholar 

  9. Hou XL (2005) Radiochemical determination of 41Ca in reactor concrete for decommissioning. Radiochim Acta 93:611–617

    CAS  Google Scholar 

  10. Hou XL (2007) Radiochemical analysis of radionuclides difficult to measure or waste characterization in decommissioning of nuclear facilities. J Radioanal Nucl Chem 273:43–48

    CAS  Google Scholar 

  11. Hou XL, Frøsig L, Nielsen SP (2007) Determination of 36Cl in nuclear waste from reactor decommissioning. Anal Chem 79:3126–3134

    CAS  PubMed  Google Scholar 

  12. Hou XL, Østergaard LF, Nielsen SP (2005) Determination of 63Ni and 55Fe in nuclear waste samples using radiochemical separation and liquid scintillation counting. Anal Chim Acta 535:297–307

    CAS  Google Scholar 

  13. Choi KC, Park SK, Han SH, Choi KS, Jee KY (2005) Determination of 129I in radioactive waste from Korea NPPs. In: Proceedings of 10th international conference on environmental remediation and radioactive waste management, 2005:1446–1449

  14. Osvath S, Vajda N, Molnar Z, Kovaca-Szeles E, Braun M, Halasz M (2017) Determination of 93Zr in nuclear power plant wastes. J Radioanal Nucl Chem 314:31–38

    CAS  Google Scholar 

  15. Guerin N, Gagne A, Kramer-Tremblay S (2017) A rapid method for the routine monitoring of Tc-99 by liquid scintillation counting. J Radioanal Nucl Chem 314:2009–2017

    CAS  Google Scholar 

  16. Vesely A, Trombitas H, Lindauer H (2008) Determination of beta emitters in materials from research reactor decomissioning. In: Eikenberg J, Jäggi M, Beer H, Baehrle H (eds) Advances in liquid scintillation spectrometry, 2008. University of Arizona, Radiocarbon Publishers, Tucson, pp 435–441

    Google Scholar 

  17. Guerin N, Riopel R, Rao R, Kramer-Tremblay S, Dai X (2017) An improved method for the rapid determination of 90Sr in cow’s milk. J Environ Radioact 175:115–119

    PubMed  Google Scholar 

  18. Tayeb M, Dai X, Corcoran EC, Kelly DG (2014) Evaluation of interferences on measurements of 90Sr/90Y by TDCR Cherenkov counting technique. J Radioanal Nucl Chem 300:409–414

    CAS  Google Scholar 

  19. Tayeb M, Dai X, Sdraulig S (2016) Rapid and simultaneous determination of strontium-90 and strontium-89 in seawater in emergency situations. J Environ Radioact 153:214–221

    CAS  PubMed  Google Scholar 

  20. Dai X, Cui Y, Kramer-Tremblay S (2013) A rapid method for determining strontium-90 in urine samples. J Radioanal Nucl Chem 296:363–368

    CAS  Google Scholar 

  21. Anand SS, Rengarajan R, Sarma VVSS (2018) 234Th based carbon export flux along the Indian Geotraces G102 section in the Arabian Sea and the Indian Ocean. Glob Bioerochemcial Cycles 32:417–436

    Google Scholar 

  22. Graven HD (2015) Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. PNAS 112(31):9542–9545

    CAS  PubMed  Google Scholar 

  23. Keller ED, Turnbull JC, Norris MW (2016) Detecting long-term change in point source fossil CO2 emissions with tree ring archives. Atom Chem Phys. https://doi.org/10.5194/acp-2015-919

    Article  Google Scholar 

  24. Pates JM, Cook GT, MacKenzie AB, Anderson R, Bury SJ (1996) Determination of 234Th in marine samples by liquid scintillation spectrometry. Anal Chem 68:3783–3788

    CAS  PubMed  Google Scholar 

  25. Biggin CD, Cook GT, MacKenzie AB, Pates JM (2002) Time-efficient method for the determination of 210Pb, 210Bi and 210Po activities in seawater using liquid scintillation spectrometry. Anal Chem 74:671–677

    CAS  PubMed  Google Scholar 

  26. Fons-Castells J, Oliva J, Tent-Petrus J, Llaurado M (2017) Simultaneous determination of Ra-226, Ra-228 and Pb-210 in drinking water using 3M Empore (TM) RAD disk by LSC-PLS. Appl Radiat Isot 124:83–89

    CAS  PubMed  Google Scholar 

  27. Mikalauskiene R, Maeika J, Petroaius R, Szwarczewski P (2018) Comparison of beta (LSC) and gamma (HPGe) spectrometric methods for lead-210 in chronological study. Geochronometria 45:38–50

    Google Scholar 

  28. Stanley P (2012) Liquid scintillation counting: Recent development. Elsevier, Amsterdam, p 510

    Google Scholar 

  29. L’Annunziata MF (2012) Handbook of radioactivity analysis, 3rd edn. Academic press, Amsterdam

    Google Scholar 

  30. Cassette P, Bouchard J (2003) The design of a liquid scintillation counter based on the triple to double coincidence ratio method. Nucl Instrum Method Phys Res A505:72–75

    Google Scholar 

  31. Cassette P, Vatin R (1992) Experimental evaluation of TDCR models for 3 PM liquid scintillation countor. Nucl Instrum Method Phys Res A312:95–99

    CAS  Google Scholar 

  32. Malonda AG, Coursey BM (1988) Calculation of beta counting efficiency for liquid scintillation system with three phototubes. Appl Radiat Isot 39:1191–1196

    CAS  Google Scholar 

  33. Zimmerman BE, Colle R, Cessna JT (2004) Construction and implementation of the NIST triple-to-double coincidence ratio spectrometer. Appl Radiat Isot 60:433–438

    CAS  PubMed  Google Scholar 

  34. Hwang HY, Kwak SI, Lee HY, Lee KB, Park TS (2004) Development of 3 PM liquid scintillation counting system with geometrical efficiency variation. Appl Radiat Isot 60:469–473

    CAS  PubMed  Google Scholar 

  35. Ivan C, Cassette P, Sahagia M (2008) A new TDCR-LS counter using channel photomultiplier tubes. Appl Radiat Isot 66:1006–1011

    CAS  PubMed  Google Scholar 

  36. Qin MJ, Mo L, Alexiev D, Cassette P (2008) Construction and implementation of a TDCR system at ANSTO. Appl Radiat Isot 66:1033–1037

    CAS  PubMed  Google Scholar 

  37. Jäggi M, Eikenberg J (2014) Camparison of TriCarb and Hidex 300SL techniques using measurement of 241Pu and 90Sr on various samples. Appl Radiat Isot 93:120–125

    PubMed  Google Scholar 

  38. Atkinson R, Eddy T, Kuhne W, Jannik T, Brandl A (2014) Measurement of the tritium concentration in the fractionated distillate from environmental water samples. J Environ Radioact 135:113–119

    CAS  PubMed  Google Scholar 

  39. Dai X, Kramer-Tremblay S (2014) Five-column chromatography separation for simultaneous determination of hard-to-detect radionuclides in water and swipe samples. Anal Chem 86:5441–5447

    CAS  PubMed  Google Scholar 

  40. Priya S, Murali MS, Mary G, Radhakrishnan K, Gopalakrishnan RK, Goswami A (2013) Validation of chemical separation method for the determination of 63Ni using TDCR technique in steel samples of APSARA reactor. J Radioanal Nucl Chem 298:1551–1557

    CAS  Google Scholar 

  41. Miura T, Minai Y (2017) Radiometric analysis of 90Sr in fish bone ash samples by liquid scintillation counting after separation by extraction chromatographic resin. J Radioanal Nucl Chem 313:343–351

    CAS  Google Scholar 

  42. Oropesa Verdecia P, Carcia Rodriguez L, Serra Aguila RA, Moreno Leon Y, Jenez Magana Y, Cassette P (2018) Ga-68 activity calibrations for nuclear medicine application in Cuba. Appl Radiat Isot 134:112–116

    PubMed  Google Scholar 

  43. Krapiec M, Walanus A (2011) Application of the triple photomultiplier liquid spectrometer Hidex 300SL in radiocarbon dating. Radiocarbon 53:543–550

    CAS  Google Scholar 

  44. Wisser S, Frenzel E, Dittmer M (2006) Innovative procedure for the determination of gross-alpha/gross-beta activities in drinking water. Appl Radiat Isot 64:368–372

    CAS  PubMed  Google Scholar 

  45. Broda R (2003) A review of the triple-to-double coincidence ratio (TDCR) method for standardizing radionuclides. Appl Radiat Isot 58(5):585–594

    CAS  PubMed  Google Scholar 

  46. Guerin N, Dai X (2015) Determination of 55Fe in urine by liquid scintillation counting. J Radioanal Nucl Chem 304:1059–1069

    CAS  Google Scholar 

  47. Taddei MHT, Macacini JF, Vicente R, Marumo JT, Sakata SK, Terremoto LAA (2013) A comparison study using liquid scintillation counting and X-ray spectrometry to determine 55Fe in radioactive waste. J Radioanal Nucl Chem 295:2267–2272

    CAS  Google Scholar 

  48. Kossert K, Carles AG, Nahle O (2014) Improved Cerenkov counting techniques based on a free parameter model. Appl Radiat Isot 86:7–12

    CAS  PubMed  Google Scholar 

  49. Bobin C, Thiam C, Bouchard J, Jaubert F (2010) Application of a stochastic TDCR model based on Geant4 for Cherenkov primary measurements. Appl Radiat Isot 68:2366–2371

    CAS  PubMed  Google Scholar 

  50. Kossert K, Bokeloh K, Ehlers M, Nahle O, Scheibe O, Schwarz U, Thieme K (2016) Comparison of 90Y activity measurements in nuclear medicine in Germany. Appl Radiat Isot 109:247–249

    CAS  PubMed  Google Scholar 

  51. Olfert JM, Dai X, Kramer-Tremblay S (2014) Rapid determination of 90Sr/90Y in water samples by liquid scintillation and Cherenkov counting. J Radioanal Nucl Chem 300:263–267

    CAS  Google Scholar 

  52. Coha I, Neufuss S, Grahek Ž, Němec M, Nodilo M, John J (2016) The effect of counting conditions on pure beta emitter determination by Cherenkov counting. J Radioanal Nucl Chem 310:891–903

    CAS  Google Scholar 

  53. Amano H, Sakamoto H, Shigal N, Suzuki K (2016) Method for rapid analysis of Sr-90 in edible plant samples collected near Fukushima, Japan. Appl Radiat Isot 112:131–135

    CAS  PubMed  Google Scholar 

  54. Yang Y, Song L, Luo M, Dai X, Guo X (2017) A rapid method for determining 90Sr in leaching solution from cement solidification of low and intermediate level radioactive wastes. J Radioanal Nucl Chem 314:477–482

    CAS  Google Scholar 

  55. Kumabe I, Koori N, Matsuki Y, Sugisaki M, Ichigi T (1988) On-line measurement system for low level tritium gas by use of proportional counter. J At Energy Soc Jpn 30:526–530

    CAS  Google Scholar 

  56. Jean-Baptiste P, Cassette P, Fourra E, Tartas I, Dapoigny A (2014) Measurement of French national tritiated water standard by helium-3 mass spectrometry. Appl Radiat Isot 87:157–161

    CAS  PubMed  Google Scholar 

  57. Huang YJ, Fan ZB, Chen CF, Qin HJ, Wu LS, Guo GY, Yang LT, Shang-Guan ZH (2014) Method validation and uncertainty evaluation of organic bound tritium analysis in environmental sample. J Environ Radioact 134:83–88

    CAS  PubMed  Google Scholar 

  58. Croudace IW, Warwick PE, Morris JE (2012) Evidence for the preservation of technogenic tritium organic compounds in an estuarine sedimentary environment. Environ Sci Technol 46(1):5704–5712

    CAS  PubMed  Google Scholar 

  59. Croudace IW, Warwick PE, Kim D (2014) Using thermal evolution profiles to infer tritium speciation in nuclear site metals: an aid to decommissioning. Anal Chem 86(18):9177–9185

    CAS  PubMed  Google Scholar 

  60. Warwick PE, Kim D, Croudace IW (2010) Effective desorption of tritium diverse solid matrices and its application to routine analysis of decommissioning materials. Anal Chim Acta 676:93–102

    CAS  PubMed  Google Scholar 

  61. Enachescu M, Stan-Sion C, Petre AR, Postolache C, Fugaru V (2018) H-3 and C-14 measurement of the irradiated graphite from the decommissioning VVR-S reactor in NIPNE Bucharest. J Anal At Spectrom 33:431–436

    CAS  Google Scholar 

  62. Hou XL (2005) Rapid analysis of 14C and 3H in graphite and concrete for decommissioning of nuclear reactor. Appl Radiat Isot 62:871–882

    CAS  PubMed  Google Scholar 

  63. Kim DJ, Warwick PE, Croudace IW (2008) Tritium speciation in nuclear reactor bioshield concrete and its impact on accurate analysis. Anal Chem 80:5476–5480

    CAS  PubMed  Google Scholar 

  64. Oh JS, Warwick PE, Croudace IW, Lee SH (2014) Rapid determination of tritium in urine samples using a combustion technique. J Radioanal Nucl Chem 299:187–191

    CAS  Google Scholar 

  65. Croudace IW, Warwick PE, Marsh R (2017) A suite of robust radioanalytical techniques for the determination of tritium and other volatile radionuclides in decommissioning wastes and environmental matrices. Fusion Sci Technol 71:290–295

    Google Scholar 

  66. UNSCEAR (2008) Sources and effects of ionizing radiation, Report to the General Assembly with scientific annexes Vol I. United Nations Scientific Committee on the Effects of Atomic Radiation, New York. 2010

  67. Hou XL (2018) Tritium and 14C in the environment and nuclear facilities: sources and analytical methods. J Nucl Fuel Cycle Waste Technol 16:11–39

    Google Scholar 

  68. Magnusson Å, Stenström K, Aronsson PO (2008) C-14 in spent ion-exchange resins and process water from nuclear reactors: a method for quantitative determination of organic and inorganic fractions. J Radioanal Nucl Chem 275:261–273

    CAS  Google Scholar 

  69. Canducci C, Bartolomei P, Magnani G, Rizzo A, Piccoli A, Tositti L, Esposito M (2013) Upgraded of the CO2 direct absorption method for low-level 14C liquid scintillation counting. Radiocarcon 55(2–3):260–267

    CAS  Google Scholar 

  70. Shaw GD, Conklin MH, Nimz GJ, Liu FJ (2014) Groundwater and surface water flow to the Merced River, Yosemite Valley, California: 36Cl and Cl- evidence. Water Resour Res 50:1943–1959

    Google Scholar 

  71. Muensterer C, Fohlmeister J, Christl M, Schroeder-Ritzrau A, Alfimov V, Ivy-Ochs S, Wackerbarth A, Mangini A (2012) Cosmogenic Cl-36 in karst waters from Bunker Cave North Western Germany - A tool to derive local evapotranspiration? Geochim Cosmochim Acta 86:138–149

    CAS  Google Scholar 

  72. Fehn U (2012) Tracing crustal fluids: application of natural I-129 and Cl-36. Annu Rev Earth Planet Sci 40:45–67

    CAS  Google Scholar 

  73. Tolmachyov S, Ura S, Momoshima N, Yamamoto M, Maeda Y (2001) Determination of Cl-36 by liquid scintillation counting from soil collected at the Semipalatinsk Nuclear Test Site. J Radioanal Nucl Chem 249:541–545

    CAS  Google Scholar 

  74. Itoh M, Watanabe K, Hatakeyama M, Tachibana M (2002) Determination of 36Cl in biological shield concrete using pyrohydrolysis and liquid scintillation counting. Analyst 127:964–966

    CAS  PubMed  Google Scholar 

  75. Fréchou C, Degros JP (2005) Measurement of 36Cl in nuclear wastes and effluents: validation of a radiochemical protocol with an in-house reference sample. J Radioanal Nucl Chem 263(2):333–339

    Google Scholar 

  76. Hammer-Rotzler B, Neuhausen J, Vockenhuber C, Boutellier V, Wohlmuther M, Tuerler A, Schumann D (2015) Radiochemical determination of I-129 and Cl-36 in MEGAPIE, a proton irradiated lead-bismuth eutectic spallation target. Radiochim Acta 103:745–758

    CAS  Google Scholar 

  77. Suárez JA, Rodriguez M, Espartero AG, Piña G (2000) Radiochemical analysis of 41Ca and 45Ca. Appl Radiat Isot 52:407–412

    PubMed  Google Scholar 

  78. Itoh M, Watanabe K, Hatakeyama M, Tachibana M (2002) Determination of 41Ca in biological-shield concrete by low-energy X-ray spectrometry. Anal Bioanal Chem 372:532–538

    CAS  PubMed  Google Scholar 

  79. Warwick PE, Croudace IW, Hilegonds DJ (2009) Effective determination of the long-lived Nuclide Ca-41 in nuclear reactor bioshield concretes: comparison of liquid scintillation counting and accelerator mass spectrometry. Anal Chem 81:1901–1906

    CAS  PubMed  Google Scholar 

  80. Hampe D, Gleisberg B, Akhmadaliev S, Rugel G, Merchel S (2013) Determination of Ca-41 with LSC and AMS: method development, modifications and applications. J Radioanal Nucl Chem 296:617–624

    CAS  Google Scholar 

  81. Fink D, Klein J, Middleton R (1990) Ca-41 –past, present and future. Nucl Instr Method Phys Res B52:572–576

    CAS  Google Scholar 

  82. Müller P, Blaum K, Bushaw BA, Die S, Geppert Ch, Nähler A, Nötershäuser W, Trautmann N, Wendt K (2000) Trace detection of 41Ca in nuclear reactor concrete by diode-laser based resonance ionization mass spectrometry. Radiochim Acta 88:487–492

    Google Scholar 

  83. Konig W, Schupfner R, Schuttelkopf H (1995) A fast and very sensitive LSC procedure to determine Fe-55 in stell and concrete. J Radioanal Nucl Chem Articles 193:127–131

    Google Scholar 

  84. Warwick PE, Croudace IW (2002) Separation of Fe-55/59 from fission and activation products using a di isobutylketon based extraction chromatographic materials, In: Warwick P (ed.) Proceedings of international symposium on environmental radiochemical analysis, Maidstone (GB), 18–20 Sep 2002. (Royal Society of Chemistry, Cambridge)

  85. Warwick PE, Croudace IW (2006) Isolation and quantification of 63Ni and 55Fe in reactor effluents using extraction chromatography and liquid scintillation analysis. Anal Chim Acta 567:277–285

    CAS  Google Scholar 

  86. Dai X, Kramer-Tremblay S, Li C (2012) Rapid determination of 226Ra in urine samples. Radiat Prot Dosim 151:30–35

    CAS  Google Scholar 

  87. Hou XL, Togneri L, Olsson M, Englund S, Gottfridsson O, Forsstrom M, Hirvonen H (2015) Standardization of radioanalytical methods for determination of 63Ni and 55Fe in waste and environmental samples, NKS-356, Nordic Nuclear Safty Research. http://www.nks.org/en/nks_reports/view_document.htm?id=111010213336225

  88. Gudelis A, Druteikiené R, Luksiené B, Gvozdaité R, Nielsen SP, Hou XL, Mazeika J, Petrosius R (2010) Assessing deposition levels of 55Fe, 60Co and 63Ni in the Ignalina NPP environment. J Environ Radioact 101:464–467

    CAS  PubMed  Google Scholar 

  89. Hou XL, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 606:105–139

    Google Scholar 

  90. Holm E, Oregioni B, Vas D, Petterson H, Rioseco J, Nilsson U (1990) Nickel-63: radiochemical separation and measurement with an on implanted silicon detector. J Radioanal Nucl Chem 138:111–118

    CAS  Google Scholar 

  91. Huang FYJ, Su TY, Tsai TL, Chao JH (2017) Analysis of Ni-63 in radwastes by extraction chromatography and radiometric techniques. J Radioanal Nucl Chem 314:886–979

    Google Scholar 

  92. Gautier C, Colin C, Garcia C (2016) A comparative study using liquid scintillation counting to determine Ni-63 in low and intermediate level radioactive waste. J Radioanal Nucl Chem 308:261–270

    CAS  Google Scholar 

  93. Wang XM, He M, Ruan XD, Xu YN, Shen HZ, Du L, Xiao CJ, Dong KX, Jiang S, Yang XR, Lan XX, Wu SY, Zhao QZ, Cai L, Pang FF (2015) Measurement of 59Ni and 63Ni by accelerator mass spectrometry at CIAE. Nucl Instrum Method B 361:34–38

    CAS  Google Scholar 

  94. Vajda N, Kim C-K (2010) Determination of radiostrontium isotopes: a review of analytical methodology. Appl Radiat Isot 68:2306–2326

    CAS  PubMed  Google Scholar 

  95. Vajda N, Ghods-Esphahani A, Cooper E, Danesi PR (1992) Determination of radiostrontium in soil samples using crown ether. J Radioanal Nucl Chem 162:307–323

    CAS  Google Scholar 

  96. Maxwell SL, Culligan B, Hutchison JB, Utsey RC, Sudowe R, McAlister DR (2017) Rapid method to determination 89/90Sr in steel samples. J Radioanal Nucl Chem 314:439–450

    CAS  Google Scholar 

  97. Hou XL (2017) Determination of radionuclidic impurities in 99mTc eluate from 99mTc/99Mo generator for quality control. J Radioanal Nucl Chem 314:659–668

    CAS  Google Scholar 

  98. Grahek Z, Dulanska S, Karanovic G, Coha I, Tucakovic I, Nodilo M, Matel L (2018) Comparison of different methodologies for the 90Sr determination in environmental samples. J Environ Radioact 181:18–31

    CAS  PubMed  Google Scholar 

  99. Surman JJ, Pates JM, Zhang H, Happel S (2014) Development and characterization of a new Sr selective resin for the rapid determination of 90Sr in environmental water samples. Talanta 129:623–628

    CAS  PubMed  Google Scholar 

  100. Chen QJ, Hou XL, Yu YX, Dahlgaard H, Nielsen SP (2002) Separation of Sr from Ca, Ba and Ra by means of Ca(OH)2 and Ba(Ra)Cl2 or Ba(Ra)SO4 for the determination of radiostrontium. Anal Chim Acta 466:109–116

    CAS  Google Scholar 

  101. Popov L, Hou XL, Nielsen SP, Yu Y, Djingova R, Kuleff I (2006) Determination of radiostrontium in environmental samples using sodium hydroxide for separation of strontium from calcium. J Radioanal Nucl Chem 269:161–173

    CAS  Google Scholar 

  102. Shi KL, Hou XL, Roos P, Wu WS (2011) Determination of Technetium-99 in environmental samples: a review. Anal Chim Acta 709:1–20

    PubMed  Google Scholar 

  103. Ikäheimonen TK, Vartti VP, Ilus E, Mattila J (2002) Technetium-99 in Fucus and seawater samples in the Finnish coastal area of the Baltic Sea, 1999. J Radioanal Nucl Chem 252:309–313

    Google Scholar 

  104. Marshall TA, Morris K, Law GTW, Mosselmans JFW, Bots P, Parry SA, Shaw S (2014) Incorporation and retention of 99-Tc(IV) in magnetite under high pH conditions. Environ Sci Technol 48:11853–11862

    CAS  PubMed  Google Scholar 

  105. Oliver LR, Perkins WT, Mudge SM (2006) Detection of technetium-99 in ascophyllum nodosum from around the Welsh coast. Chemosphere 65:2297–2303

    CAS  PubMed  Google Scholar 

  106. Hou XL, Jensen M, Nielsen SP (2007) Use of 99mTc from a commercial 99Mo/99mTc generator as yield tracer for the determination of 99Tc at low levels. Appl Radiat Isot 65:610–618

    CAS  PubMed  Google Scholar 

  107. Shi KL, Hou XL, Roos P, Wu WS (2012) Stability of technetium and decontamination of Ru and Mo in determination of 99Tc in environmental soid samples by ICP-MS. Anal Chem 84:2009–2016

    CAS  PubMed  Google Scholar 

  108. Shi KL, Qiao JX, Roos WWP, Hou X (2012) Rapid determination of technetium-99 in large volume seawater samples using sequential injection extraction chromatographic separation and ICP-MS measurement. Anal Chem 84:6783–6789

    CAS  PubMed  Google Scholar 

  109. Shi KL, Hou XL, Roos P, Nielsen SP (2013) Seasonal variation of technetium-99 in Fucus vesiculosus and its application as an oceanographic tracer. Estuar Coast Shelf Sci 127:24–28

    CAS  Google Scholar 

  110. Shi KL, Hou XL, Qiao JX, Sun XJ, Roos P, Wu WS (2016) Analytical of technitium species and fractions in natural seaweed using biochemical separation and ICP-MS measurement. Anal Chem 88:11931–11937

    CAS  PubMed  Google Scholar 

  111. Kolacinska K, Samczynski Z, Dudek J, Bojanowska-Czajka A, Trojanowicz M (2018) A comparison study on the use of Dowex 1 and TEVA-resin in determination of Tc-99 in environmental and nuclear coolant samples in a SIA system with ICP-MS detection. Talanta 184:527–536

    CAS  PubMed  Google Scholar 

  112. Guerin N, Riopel R, Kramer-Tremblay S, de Sillva N, Cornett J, Dai XX (2017) Determination of Tc-99 in fresh water using TRU resin by ICP-MS. Anal Chim Acta 988:114–120

    CAS  PubMed  Google Scholar 

  113. Jenkinson SB, McCubbin D, Kennedy PHW, Dewar A, Bonfield R, Leonard KS (2014) An estimate of the inventory of technetium-99 in the sub-tidal sediments of the Irish Sea. J Environ Radioact 133:40–47

    CAS  PubMed  Google Scholar 

  114. Dowdall M, Selnæs ØG, Gwynn JP, Lind B (2004) On the Use of 99Mo/99mTc Generators in the Analysis of Low Levels of 99Tc in Environmental Samples by Radiochemical Methods. Water Air Soil Pollu 156:287–297

    CAS  Google Scholar 

  115. Chen QJ, Dahlgaard H, Nielsen SP (1994) Determination of 99Tc in seawater at ultra-low levels. Anal Chim Acta 285:177–180

    CAS  Google Scholar 

  116. Wigley F, Warwick PE, Croudace IW, Caborn J, Sanchez AL (1999) Optimised method for the routine determination of technetium-99 in environmental samples by liquid scintillation counting. Anal Chim Acta 380:73–82

    CAS  Google Scholar 

  117. Rodriguez R, Leal L, Mianda S, Ferrer L, Avivar J, Carcia A, Cerda V (2015) Automation of Tc-99 extraction by LOV prior ICP-MS detection: application to environmental samples. Talanta 133:SI 88–SI 93

    Google Scholar 

  118. Hou XL, Hansen V, Aldahan A, Possnert G, Lind OC, Lujaniene G (2009) Speciation of Iodine-129 in the environment. Anal Chim Acta 632:181–196

    CAS  PubMed  Google Scholar 

  119. Hou XL, Dahlgaard H, Nielsen SP (2001) Chemical speciation analysis of 129I in seawater and a prliminary investigation to use it as a tracer for geochemical cycle study of stable iodine. Mar Chem 74:145–155

    CAS  Google Scholar 

  120. Hou XL, Dahlgaard H, Nielsen SP (2002) Level and origin of iodine-129 in the Baltic Sea. J Environ Radioact 61:331–343

    CAS  PubMed  Google Scholar 

  121. Hou XL, Dahlgaard H, Rietz B, Jacobsen U, Nielsen SP, Aarkrog A (1999) Determination of iodine-129 in seawater and some environmental materials by neutron activation analysis. Analyst 124:1109–1114

    CAS  Google Scholar 

  122. Zulauf A, Happel S, Mokili MB, Bombard A, Jungclas H (2010) Characterization of an extraction chromatographic resin for the separation and determination of Cl-36 and I-129. J Radioanal Nucl Chem 286:539–546

    CAS  Google Scholar 

  123. Osman AAA, Bister S, Riebe B, Daraoui A, Vockenhuber C, Wacker L, Walther C (2016) Radioecological investigation of H-3, C-14, and I-129 in natural waters from Fuhrberger Feld catchment, Northern Germany. J Environ Radioact 165:243–252

    CAS  PubMed  Google Scholar 

  124. Muramatsu Y, Uchida S, Sumiya M, Ohmomo Y (1995) Iodine separation procedure for the determination of 129I and 127I in soil by neutron activation analysis. J Radioanal Nucl Chem Lett 94:329–338

    Google Scholar 

  125. Hou XL, Wang YY (2016) Determination of ultra-low level 129I in vegetation using pyrolysis for iodine separation and accelerator mass spectrometry measurement. J Anal At Spectrom 31:1298–1310

    CAS  Google Scholar 

  126. Hou XL, Zhang DX (2018) Determination of 129I in environmental solid samples using pyrolysis separation and accelerator mass spectrometry measurement. J Radioanal Nucl Chem 317:487–499

    CAS  Google Scholar 

  127. Zhang LY, Hou XL, Xu S (2015) Speciation analysis of 129I and 127I in aerosol using sequential extraction and mass spectrometry detection. Anal Chem 87(13):6937–6944

    CAS  PubMed  Google Scholar 

  128. Qiao JX, Hou XL, Miró M, Roos P (2009) Determination of plutonium isotopes in waters and environmental solids: a review. Anal Chim Acta 652:66–84

    CAS  PubMed  Google Scholar 

  129. Alamalu D, Aggarwal SK (2016) Determining the age and history of plutonium using isotope correlations and experimentally determined data on isotopic abundances of plutonium and Am-241. J Radioanal Nucl Chem 307:277–284

    Google Scholar 

  130. Varga Z, Nicholl A, Zsigrai Z, Wallenius M, Mayer K (2018) Methodology for the Preparation and Validation of Plutonium Age Dating Materials. Anal Chem 90:4019–4024

    CAS  PubMed  Google Scholar 

  131. Oh JS, Warwick PE, Croudace IW, Lee SH (2013) Rapid measurement of 241Pu activity at environment level using low-level liquid scintillation analysis. J Radioanal Nucl Chem 298:353–359

    CAS  Google Scholar 

  132. Vajda N, Kim CK (2010) Determination of Pu isotopes by alpha spectrometry: a review of analytical methodology. J Radioanal Nucl Chem 283:203–223

    CAS  Google Scholar 

  133. UNSCEAR (2006) Annex E: Sources-to-effects assessment for radon in homes and workplaces, In “Effects of Ionizing Radiation”. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2006 Report to the General Assembly. Volume 2, United Nations, New York

  134. Purkl S, Eisenhauer A (2004) Determination of radium isotopes and 222Rn in a groundwater affected coastal area of the Baltic Sea and the underlying sub-sea floor aquifer. Mar Chem 87:137–149

    CAS  Google Scholar 

  135. Lamontagne S, La Salle CLG, Hancock GJ, Webster IT, Craig T, Simmons CT, Love AJ, James-Smith J, Smith AJ, Kämpf J, Fallowfield HJ (2008) Radium and radon radioisotopes in regional groundwater, intertidal groundwater, and seawater in the Adelaide coastal waters study area: implications for the evaluation of submarine groundwater discharge. Mar Chem 109:318–336

    CAS  Google Scholar 

  136. Cook PG, Wood C, White T, Simmons CT, Fass T, Brunner P (2008) Groundwater inflow to a shallow, poorly-mixed wetland estimated from a mass balance of radon. J Hydrol 354:213–226

    Google Scholar 

  137. Murad A, Alshamsi D, Hou XL, Al Shidi F, Al Kendi R, Aldahan A (2014) Radioactivity in groundwater along the borders of Oman and UAE. J Radioanal Nucl Chem 299:1653–1660

    CAS  Google Scholar 

  138. Schönhofer F, Pock K, Friedmann H (1995) Radon surveys with charcoal and liquid scintillation counting. Field experience and comparison to other techniques. J Radioanal Nucl Chem 193:337–346

    Google Scholar 

  139. Iimoto T, Akasaka Y, Koike Y, Kosako T (2008) Development of a technique for the measurement of the radon exhalation rate using an activated charcoal collector. J Environ Radioact 99:587–595

    CAS  PubMed  Google Scholar 

  140. Wadach JB, Hess CT (1985) Radon-222 concentration measurements in soil using liquid scintillation and Track Etch. Health Phys 48:805–808

    CAS  PubMed  Google Scholar 

  141. Turtiainen T (2009) Measurement of radon emanation of drainage layer media by liquid scintillation counting. J Radioanal Nucl Chem 279:325–331

    CAS  Google Scholar 

  142. Horiuchi K, Murakami Y (1983) A new method for the determination of radon in soil air by the “open vial” and integral counting with a liquid scintillation counter. J Radioanal Nucl Chem 80:153–163

    CAS  Google Scholar 

  143. Talha SA, Lindsay R, Newman RT, de Meijer RJ, Maleka PP, Hlatshwayo IN, Mlwilo NA, Mohanty AK (2008) γ-Ray spectrometry of radon in water and the role of radon to representatively sample aquifers. Appl Radiat Isot 66:1623–1626

    CAS  PubMed  Google Scholar 

  144. Stringer CE, Burnett WC (2004) Sample bottle design improvements for radon emanation analysis of natural waters. Health Phys 87:642–646

    CAS  PubMed  Google Scholar 

  145. Galán-López M, Martín-Sánchez A (2008) Present status of 222Rn in groundwater in Extremadura. J Environ Radioact 99:1539–1543

    PubMed  Google Scholar 

  146. EPA (2009) 2009 Edition of the Drinking Water Standards and Health Advisories, EPA 822-R-09-011. Environmental Protection Agency, Washington, DC, Office of Water, U.S

    Google Scholar 

  147. Dinh CN, Rajchel L, Van HD, Nowak J (2017) Ra-224 and the Ra-224/Ra-228 activity ratio in selected mineral waters from the Polish Carpathians. Geol Q 61:771–778

    Google Scholar 

  148. Kim H, Jung Y, Ji YY, Lim JM, Chung KH, Kang MJ (2017) Validation of a procedure for the analysis of Ra-226 in naturally occurring radioactive materials using a liquid scintillation counter. J Environ Radioact 166:188–194

    CAS  PubMed  Google Scholar 

  149. Vasile M, Benedik L, Altzitzoglou T, Spasova Y, Wätjen U, González de Orduña R, Hult M, Beyermann M, Mihalcea I (2010) 226Ra and 228Ra determination in mineral waters—comparison of methods. Appl Radiat Iso. 68:1236–1239

    CAS  Google Scholar 

  150. Song L, Yang Y, Luo M, Ma Y, Dai X (2017) Rapid determination of radium-224/226 in seawater sample by alpha spectrometry. J Radioanal Nucl Chem 171:169–175

    CAS  Google Scholar 

  151. Eikenberg J, Tricca A, Vezzu G, Bajo S, Ruethi M, Surbeck H (2001) Determination of 228Ra, 226Ra and 224Ra in natural water via adsorption on MnO2 - coated discs. J Environ Radioact 54:109–131

    CAS  PubMed  Google Scholar 

  152. van Beek P, Souhaut M, Reyss JL (2010) Measuring the radium quartet (228Ra, 226Ra, 224Ra, 223Ra) in seawater samples using gamma spectrometry. J Environ Radioact 101:521–529

    PubMed  Google Scholar 

  153. IAEA (2010) Analytical methodology for the determination of radium isotopes in environmental samples. IAEA/AQ/19, International Atomic Energy Agency, Vienna

    Google Scholar 

  154. Case GN, McDowell WJ (1990) Separation of radium and its determination by photon-electron-rejecting alpha liquid scintillation (PERALS) spectrometry. Radioact Radiochem 1:58–69

    CAS  Google Scholar 

  155. Nour S, El-Sharkawy A, Burnett WC, Horwitz EP (2004) Radium-228 determination of natural waters via concentration on manganese dioxide and separation using Diphonix ion exchange resin. Appl Radiat Isot 61:1173–1178

    CAS  PubMed  Google Scholar 

  156. WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva, p 541

    Google Scholar 

  157. Laureano-Pérez L, Collé R, Fitzgerald R, Outola I, Pibida L (2007) A liquid-scintillation-based primary standardization of 210Pb. Appl Radiat Isot 65:1368–1380

    PubMed  Google Scholar 

  158. Vajda N, La Rosa J, Zeisler R, Danesi P, Kis Benedek G (1997) A novel technique for the simultaneous determination of 210Pb and 210Po using a crown ether. J Environ Radioact 37:355–372

    CAS  Google Scholar 

  159. Sirelkhatim DA, Sam AK, Hassona RK (2008) Distribution of 226Ra–210Pb–210Po in marine biota and surface sediments of the Red Sea, Sudan. J Environ Radioact 99:1825–1828

    CAS  PubMed  Google Scholar 

  160. Outola I, Nour S, Kurosaki H, Inn K, La Rosa J, Lucas L, Volkovitsky P, Koepenick K (2008) Investigation of radioactivity in selected drinking water samples from Maryland. J Radioanal Nucl Chem 277:155–159

    CAS  Google Scholar 

  161. European Union (1998) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Official Journal of the European Communities, L 330/32, 05/12/1998. The Council of the European Union, Brussels

  162. Jobbágy V, Wätjen U, Meresova J (2010) Current status of gross alpha/beta activity analysis in water samples: a short overview of methods. J Radioanal Nucl Chem 286:393–399

    Google Scholar 

  163. Cooper EL, Cox JM, Workman WJ (1998) Analysis of Sr-90 and alpha-particle emitters on air filters and swipe samples using a liquid scintillation counter with alpha/beta discrimination. Radioact Radiochem 9:25–40

    CAS  Google Scholar 

  164. Piraner O, Jones RL (2009) Urine gross alpha/beta analysis by liquid scintillation counting for terrorism preparedness. In: Eikenberg J, Jäggi M, Beer H, Baehrle H (eds) Advances in liquid scintillation spectrometry, 2008. University of Arizona, Tucson, Radiocarbon Publishers, pp 41–46

    Google Scholar 

  165. Eikenberg J, Fiechtner A, Rüthi M, Zumsteg I (1996) A rapid screening method for determining gross alpha activity in urine using & #x03B1;/β LSC. In: Cook GT, Harkness DD, MacKenzie AB, Miller BF, Scott EM (eds) Advances in liquid scintillation spectrometry, 1994. University of Arizona, Radiocarbon Publishers, Tucson, pp 283–292

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, X. Liquid scintillation counting for determination of radionuclides in environmental and nuclear application. J Radioanal Nucl Chem 318, 1597–1628 (2018). https://doi.org/10.1007/s10967-018-6258-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6258-6

Keywords

Navigation