Skip to main content
Log in

Evaluation of surface water–groundwater interaction using environmental isotopes (D, 18O and 222Rn) in Chongli Area, China

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In order to understand the interaction between surface water and groundwater in Qingshuihe Basin of Chongli Area, the environmental isotopic D, 18O and 222Rn in surface water and groundwater have been analysis, the study results show that: the calculation results based on the D and 18O, the surface water in middle stream of Donggou River has been recharged by groundwater and river water upstream, the percentage of groundwater recharge is 56%; the calculation results based on the 222Rn, the average seepage rate of surface water is 27.8 m3/d/m in the upstream section, and the average recharge rate of groundwater is 17.6 m3/d/m. It is concluded that, the groundwater and surface water interaction is the main characteristics and processes of water cycle in Qingshuihe Basin, and groundwater recharge is the main sources of surface water in draught seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Banks EW, Simmons CT, Love P et al (2011) Assessing spatial and temporal connectivity between surface water and groundwater in a regional catchment: implications for regional scale water quantity and quality. J Hydrol 404:30–49

    Article  CAS  Google Scholar 

  2. Du SH, Su XS, Zhang WJ (2013) Effective storage rates analysis of groundwater reservoir with surplus local and transferred water used in Shijiazhuang City, China. Water Environ J 27:157–169

    Article  Google Scholar 

  3. Freitas JG, Furquim SAC, Aravena R et al (2019) Interaction between lakes’ surface water and groundwater in the pantanal wetland, Brazil. Environ Earth Sci 78:5

    Article  CAS  Google Scholar 

  4. Song TJ, Chen YX, Du SH et al (2017) Hydrogeochemical evolution and risk assessment of human health in a riverbank filtration field, Northeastern China. Hum Ecol Risk Assess Int J 23(4):705–726

    Article  CAS  Google Scholar 

  5. Su XS, Lu SH, Yuan WZ et al (2018) Redox zonation for different groundwater flow paths during bank filtration: a case study at Liao River, Shenyang, Northeastern China. Hydrogeol J 26(5):1573–1589

    Article  CAS  Google Scholar 

  6. Luo X, Jiao JJ, Wang XS et al (2016) Temporal Rn-222 distributions to reveal groundwater discharge into desert lakes: implication of water balances in the Badain Jaran Desert, China. J Hydrol 534:87–103

    Article  CAS  Google Scholar 

  7. Guo QL, Yang YS, Han YY et al (2019) Assessment of surface-groundwater interactions using hydrochemical and isotopic techniques in a coalmine watershed, NW China. Environ Earth Sci 78(3):91

    Article  CAS  Google Scholar 

  8. Su XS, Xu W, Du SH (2014) Responses of groundwater vulnerability to artificial recharge under extreme weather conditions in Shijiazhuang City, China. J Water Supply Res Technol Aqua 63(3):224–238

    Article  Google Scholar 

  9. Su XS, Cui G, Du SH (2016) Using multiple environmental methods to estimate groundwater discharge into an arid lake (Dakebo Lake, Inner Mongolia, China). Hydrogeol J 24:1707–1722

    Article  CAS  Google Scholar 

  10. Dhakate R, Modi D, Rao VVSG (2019) Impact assessment of coal mining on river water and groundwater and its interaction through hydrological, isotopic characteristcs, and simulation flow modeling. Arab J Geosci 12(1):8

    Article  CAS  Google Scholar 

  11. Liao F, Wang GC, Shi ZM et al (2018) Estimation of groundwater discharge and associated chemical fluxes into Poyang Lake, China: approaches using stable isotopes (delta D and delta O-18) and radon. Hydrogeol J 26(5):1625–1638

    Article  CAS  Google Scholar 

  12. Wang W, Dai Z, Zhao Y et al (2016) A quantitative analysis of hydraulic interaction processes in stream–aquifer systems. Sci Rep 6:19876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nikolov J, Stojkovic I, Todorovic N et al (2018) Evaluation of different LSC method for Rn-222 determination in waters. Appl Radiat Isot 142:56–63

    Article  CAS  PubMed  Google Scholar 

  14. Bertin C, Bourg ACM (1994) Radon-222 and chloride as natural tracers of the infiltration of river water into an alluvial aquifer in which there is significant river/groundwater mixing. Environ Sci Technol 28(5):794–798

    Article  CAS  PubMed  Google Scholar 

  15. Chanyotha S, Kranrod C, Burnett WC et al (2014) Prospecting for groundwater discharge in the cannals of Bankok via natural radon and thoron. J Hydrol 519:1485–1492

    Article  CAS  Google Scholar 

  16. Cook PG, Favreau G, Dighton JC et al (2003) Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. J Hydrol 277(1–2):74–88

    Article  CAS  Google Scholar 

  17. Dimova NT, Burnett WC, Chanton JP et al (2013) Application of radon-222 to investigation groundwater discharge into small shallow lakes. J Hydrol 486:112–122

    Article  CAS  Google Scholar 

  18. Frei S, Gilfedder BS (2015) FINIFLUX: an implicit finite element model for quantification of groundwater fluxes and hyporheic exchange in streams and rivers using radon. Water Resour Res 51(8):6776–6786

    Article  Google Scholar 

  19. Gilfedder BS, Frei S, Hofmann H et al (2015) Groundwater discharge to wetlands driven by storm and flood events: quantification using continuous Radon-222 and electrical conductivity measurements and dynamic mass-balance modelling. Geochim Cosmochim Acta 165:161–177

    Article  CAS  Google Scholar 

  20. Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater-surface water interaction: a review. Hydrol Earth Syst Sci 10(6):873–887

    Article  CAS  Google Scholar 

  21. Martinez JL, Raiber M, Cox ME et al (2015) Assessment of groundwater-surface water interaction using long-term hydrochemical data and isotope hydrology: headwaters of the Condamine River, Southeast Queensland, Australia. Sci Total Environ 536:499–516

    Article  CAS  PubMed  Google Scholar 

  22. Negrel P, Petelet-Giraud E, Barbier J et al (2003) Surface water–groundwater interactions in an alluvial plain: chemical and isotopic systematics. J Hydrol 277(3–4):248–267

    Article  CAS  Google Scholar 

  23. Su X, Xu W, Yang F et al (2015) Using new mass balance methods to estimate gross surface water and groundwater exchange with naturally occurring tracer 222Rn in data poor regions: a case study in northwest China. Hydrol Process 29(6):979–990

    Article  Google Scholar 

  24. Xu W, Su XS, Dai ZX et al (2017) Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River Basin, Northwest China. Hydrogeol J 25(7):2015–2029

    Article  CAS  Google Scholar 

  25. Xu W, Zhu PC, Yang FT (2019) Evaluation of groundwater recharge sources based on environmental tracers in an arid alluvial fan, NW China. J Radioanal Nucl Chem 319:123–133

    Article  CAS  Google Scholar 

  26. Yi P, Luo H, Chen L et al (2018) Evaluation of groundwater discharge into surface water by using Radon-222 in the source Area of Yellow River, Qinghai-Tibet Plateau. J Environ Radioact 192:257–266

    Article  CAS  PubMed  Google Scholar 

  27. Zhao D, Wang GC, Liao F et al (2018) Groundwater-surface water interactions derived by hydrochemical and isotopic (Rn-222 deuterium, oxygen-18) tracers in the Nomhon area, Qaidam Basin, NW China. J Hydrol 565:650–661

    Article  CAS  Google Scholar 

  28. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41502223, 41772239), Jilin Province Science and Technology Development Plan (Grant No. 20170101202JC). The authors would like to thank the anonymous reviewers for comments during the review process that greatly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijie Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Deng, Z., Liu, Y. et al. Evaluation of surface water–groundwater interaction using environmental isotopes (D, 18O and 222Rn) in Chongli Area, China. J Radioanal Nucl Chem 321, 303–311 (2019). https://doi.org/10.1007/s10967-019-06588-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06588-5

Keywords

Navigation