Skip to main content
Log in

The separation of thorium and rare earth elements using [A336][NO3]: insight into a new extraction mechanism

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, extraction and separation of thorium(IV) and a few representative rare earths in HNO3 media was evaluated using trioctylmethylammonium nitrate ([A336][NO3]) ionic liquid. An unexpected novel extraction mechanism was identified based on the studies in the slope analysis and ESI–MS spectrum. The trimer of [A336][NO3] was confirmed to dominate the extraction reaction by ESI–MS spectrum before and after the extraction. The extraction efficiency of La(III), Eu(III) and Lu(III) by [A336][NO3] are much lower than Th(IV) in acid medium, which means that it is possible to separate thorium from rare earths or the rare earth ores by using [A336][NO3].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nasab ME (2014) Solvent extraction separation of uranium(VI) and thorium(IV) with neutral organophosphorus and amine ligands. Fuel 116:595–600

    Article  Google Scholar 

  2. Rao A, Tomar BS (2016) Extraction of thorium employing N,N-dialkyl amide into room temperature ionic liquid followed by supercritical carbon dioxide stripping. Sep Purif Technol 161:159–164

    Article  CAS  Google Scholar 

  3. Ashley SF, Parks GT, Nuttall WJ, Boxall C, Grimes RW (2012) Thorium fuel has risks. Nature 492:31–33

    Article  CAS  Google Scholar 

  4. Li Z, Zhao H, He SH, Chen M, Li QA (2016) Systematic research on solvent extraction process for extracting 233U from irradiated thorium. Hydrometallurgy 166:160–166

    Article  CAS  Google Scholar 

  5. Nasab ME, Sam A, Milani SA (2011) Determination of optimum process conditions for the separation of thorium and rare earth elements by solvent extraction. Hydrometallurgy 106:141–147

    Article  CAS  Google Scholar 

  6. Kuang S, Zhang Z, Li Y, Wu G, Wei H, Liao W (2017) Selective extraction and separation of Ce(IV) from thorium and trivalent rare earths in sulfate medium by an α-aminophosphonate extractant. Hydrometallurgy 167:107–114

    Article  CAS  Google Scholar 

  7. Yan Z-Y, Huang Q-G, Wang L, Zhang F (2019) Synthesis of tailored bis-succinamides and comparison of their extractability for U(VI), Th(IV) and Eu(III). Sep Purif Technol 213:322–327

    Article  CAS  Google Scholar 

  8. Raju CSK, Subramanian MS (2007) Sequential separation of lanthanides, thorium and uranium using novel solid phase extraction method from high acidic nuclear wastes. J Hazard Mater 145:315–322

    Article  CAS  Google Scholar 

  9. McCann K, Mincher BJ, Schmitt NC, Braley JC (2017) Hexavalent actinide extraction using N,N-dialkyl amides. Ind Eng Chem Res 56:6515–6519

    Article  CAS  Google Scholar 

  10. Ren P, Wang C, Tao W, Yang X, Yang S, Yuan L, Chai Z, Shi W (2020) Selective separation and coordination of europium(III) and americium(III) by bisdiglycolamide ligands: solvent extraction, spectroscopy, and DFT calculations. Inorg Chem 59:14218–14228

    Article  Google Scholar 

  11. Ibrahim SM, Zhang Y, Xue Y, Yang S, Ma F, Tian G (2020) Extraction of lanthanides(III) along with thorium(IV) from chloride solutions by N,N-di(2-Ethylhexyl)-diglycolamic acid. Solvent Extr Ion Exc 38:417–429

    Article  CAS  Google Scholar 

  12. Rout A, Venkatesan KA, Srinivasan TG, Rao PRV (2012) Ionic liquid extractants in molecular diluents: extraction behavior of europium(III) in quarternary ammonium-based ionic liquids. Sep Purif Technol 95:26–31

    Article  CAS  Google Scholar 

  13. Zuo Y, Chen J, Li DQ (2008) Reversed micellar solubilization extraction and separation of thorium(IV) from rare earth(III) by primary amine N1923 in ionic liquid. Sep Purif Technol 63:684–690

    Article  CAS  Google Scholar 

  14. Gupta B, Malik P, Deep A (2002) Extraction of uranium, thorium and lanthanides using Cyanex-923: their separations and recovery from monazite. J Radioanal Nucl Chem 251:451–456

    Article  CAS  Google Scholar 

  15. Nanda D, Oak MS, Maiti B, Chauhan HP, Dutta PK (2002) Selective and uphill transport of uranyl ion in the presence of some base metals and thorium across bulk liquid membrane by di (2-ethylhexyl) phosphoric acid. Sep Sci Technol 37:3357–3367

    Article  CAS  Google Scholar 

  16. Niu Y-N, Ren P, Zhang F, Yan Z-Y (2018) Solvent extraction of Eu3+ with 4-oxaheptanediamide into ionic liquid system. Sep Sci Technol 53:2750–2755

    Article  CAS  Google Scholar 

  17. Errico M, Eduardo SR, Juan JQR, Rong BG, Juan GSH (2017) Multi objective optimal acetone-butanol-ethanol (ABE) separation systems using liquid–liquid extraction assisted divided wall columns. Ind Eng Chem Res 56:11575–11583

    Article  CAS  Google Scholar 

  18. Yan Z-Y, Ren P, Huang Q-G, He M-J, Li Y, Wu Z-M, Wu W-S (2016) Solvent extraction of uranyl ion with 4-oxaheptanediamide into ionic liquid system from HNO3 solution. J Radioanal Nucl Chem 310:703–709

    Article  CAS  Google Scholar 

  19. Dai S, Luo J, Li J, Zhu X, Cao Y, Komarneni S (2017) Liquid-liquid micro-extraction of Cu2+ from water using a new circle micro-channel device. Ind Eng Chem Res 56:12717–12725

    Article  CAS  Google Scholar 

  20. Shkrob IA, Marin TW, Jensen MP (2014) Ionic liquid based separations of trivalent lanthanide and actinide. Ind Eng Chem Res 53:3641–3653

    Article  CAS  Google Scholar 

  21. Depuydt D, Dehaen W, Binnemans K (2015) Solvent extraction of scandium(III) by an aqueous biphasic system with a nonfluorinated functionalized ionic liquid. Ind Eng Chem Res 54:8988–8996

    Article  CAS  Google Scholar 

  22. Sun X, Luo H, Dai S (2011) Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem Rev 112:2100–2128

    Article  Google Scholar 

  23. Zhu M, Zhao J, Li Y, Mehio N, Qi Y, Liu H, Dai S (2015) An ionic liquid-based synergistic extraction strategy for rare earths. Green Chem 17:2981–2993

    Article  CAS  Google Scholar 

  24. Leyma R, Platzer S, Jirsa F, Kandioller W, Krachler R, Keppler BK (2016) Novel thiosalicylate-based ionic liquids for heavy metal extractions. J Hazard Mater 314:164–171

    Article  CAS  Google Scholar 

  25. Hoogerstraete TV, Binnemans K (2014) Highly efficient separation of rare earths from nickel and cobalt by solvent extraction with the ionic liquid trihexyl(tetradecyl)phosphonium nitrate: process relevant to the recycling of rare earths from permanent magnets and nickel metal hydride batteries. Green Chem 16:1594–1606

    Article  Google Scholar 

  26. Hoogerstraete TV, Wellens S, Verachtert K, Binnemans K (2013) Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling. Green Chem 15:919–927

    Article  Google Scholar 

  27. De los Ríos AP, Hernández-Fernández FJ, Alguacil FJ, Lozano LJ, Ginestá A, García-Díaz I, Sánchez-Segado S, López FA, Godínez C (2012) On the use of imidazolium and ammonium-based ionic liquids as green solvents for the selective recovery of Zn(II), Cd(II), Cu(II) and Fe(III) from hydrochloride aqueous solutions. Sep Purif Technol 97:150–157

    Article  Google Scholar 

  28. Sun T, Xu C, Fu J, Chen Q, Chen J, Shen X (2017) Extraction of U(VI) by the ionic liquid hexyltributylphosphonium bis (trifluoromethylsulfonyl)imides: an experimental and theoretical study. Sep Purif Technol 188:386–393

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Grant No. 21471072) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-Yi Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Zhang, F., Wu, Q. et al. The separation of thorium and rare earth elements using [A336][NO3]: insight into a new extraction mechanism. J Radioanal Nucl Chem 327, 1251–1258 (2021). https://doi.org/10.1007/s10967-020-07590-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07590-y

Keywords

Navigation