Skip to main content
Log in

Arud granitic intrusion, the most probable source of radiation in high background natural radiation areas of Ramsar, North Iran

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The petrography and geochemical characteristics of three granitic intrusion bodies in Ramsar area are investigated. The concentration of radioactive elements in Arud is higher than Noosha and Akapol. Arud is a within plate and volcanic arc I-type granite. High 226Ra, U, Th, Rb/Sr, and LREE/HREE (LaN/YbN) values and low K/Rb, Zr, and Hf values indicate that Arud is more differentiated. Natural radioactivity of Arud is probably the result of abundant apatite, allanite, sphene, and zircon minerals. Chondrite-normalized REEs spider diagrams showed that 226Ra-rich carbonate deposits of soil and sediment samples are probably geochemically related to Arud subsurface magmatic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Monged MH, Khatita AMA, El-Hemamy ST, Sabet HS, Al-Azhary MA (2020) Environmental assessment of radioactivity levels and radiation hazards in soil at North Western-Mediterranean Sea coast, Egypt. Environ Earth Sci 79(16):1–14

    Article  Google Scholar 

  2. Rafique M, Kearfott KJ, Jabbar A, Khan AR, Rahman S, Mughal MS (2020) Radiometric and petrographic characterization of sediment samples collected from Jhelum, Neelum and Kunhar Rivers of Muzaffarabad, Azad Kashmir. Environ Earth Sci 79(1):4

    Article  CAS  Google Scholar 

  3. Birami FA, Moore F, Faghihi R, Keshavarzi B (2020) Assessment of spring water quality and associated health risks in a high-level natural radiation area, North Iran. Environ Sci Pollut Res 27(6):6589–6602

    Article  Google Scholar 

  4. El-Gamal H, El-Haddad M (2019) Estimation of natural radionuclides and rare earth elements concentration of the rocks of Abu Khuruq Ring complex, Egypt. Symmetry 11(8):1041

    Article  CAS  Google Scholar 

  5. Oladejo OF, Olukotun SF, Ogundele LT, Gbenu ST, Fakunle MA (2020) Radiological risk assessment of naturally occurring radioactive materials (NORMS) from selected quarry sites in Edo State, South-south, Nigeria. Environ Earth Sci 79(5):1–8

    Article  Google Scholar 

  6. Me’nager M, Heath M, Ivanovich M, Montjotin C, Barillon C, Camp J, Hasler SE (1993) Migration of uranium from uranium mineralized fractures into the rock matrix in granite: implications for radionuclide transport around a radioactive waste repository. In: Proceedings of the 4th international conference of chemistry and migration behaviour of actinides and fission products in the geosphere, Charleston, pp 47–83

  7. Scharfenberg L, Jandausch S, Anetzberger L, Regelous A, Sharma KK, De Wall H (2019) Differences in natural gamma radiation characteristics of Erinpura and Malani granites in NW India. J Earth Syst Sci 128(5):137

    Article  Google Scholar 

  8. Asgharizadeh F, Abbasi A, Hochaghani O, Gooya ES (2012) Natural radioactivity in granite stones used as building materials in Iran. Radiat Prot Dosim 149(3):321–326

    Article  CAS  Google Scholar 

  9. Pourimani R, Ghahri R (2014) Determination of specific activity of radionuclides in some igneous rocks of Alvand plutonic complex, Hamadan, Iran, in Persian. In: 20th Iranian nuclear conference, University of Gilan Rasht, Iran

  10. Ghani Abadi T (2014) Radioactivity of Iranian granitoids and their environment effects, Master of Science thesis, Shahid Rajaee Teacher Training University, Iran (in Persian)

  11. Ashrafi S, Jahanbakhsh O (2019) Measurement of natural radioactivity of Iranian granite samples using beta–gamma coincidence spectrometer and maximum likelihood method. Environ Earth Sci 78(15):437

    Article  Google Scholar 

  12. Birami FA, Moore F, Faghihi R, Keshavarzi B (2019) Distribution of natural radionuclides and assessment of the associated radiological hazards in the rock and soil samples from a high-level natural radiation area, Northern Iran. J Radioanal Nucl Chem 322(3):2091–2103

    Article  Google Scholar 

  13. Zanchi A, Berra F, Mattei M, Ghassemi M, Sabouri J (2006) Inversion tectonics in central Alborz, Iran. J Struct Geol 28:2023–2037

    Article  Google Scholar 

  14. Alavi M (1996) Tectonostratigraphic sunthesis and structural style of the Alborz mountain system in northern Iran. J Geodyn 33:1–21

    Article  Google Scholar 

  15. Guest B, Axen GJ, Lam PS, Hassanzadeh J (2006) Late Cenozoic shortening in the west-central Alborz Mountains, northern Iran, by combined conjugate strike-slip and thin-skinned deformation. Geosphere 2:35–52

    Article  Google Scholar 

  16. Berberian F, Muir ID, Pankhurst RJ, Berberian M (1982) Late Cretaceous and Early Miocene Andean-type plutonic activity in northern Makran and Central Iran. J Geol Soc Lond 139:605–614

    Article  CAS  Google Scholar 

  17. Nazari H, Shahidi A (2011) Tectonic of Iran, Alborz. Geological Survey and Mineral Exploration of Iran. Research Institute for Earth Science, p 97

  18. Annells RN, Arthurton RS, Bazlry RAB, Davies RG, Hamedi MAR, Rahimzadeh F (1977) Geological map of Shakran (sheet 6162), scale 1:100000. Geological Survey of Iran

  19. Baharfiroz KH, Nadim H, Shafeii AR, Vahdati Daneshmand F, Nazari H, Khannazar NH (2001) Geological map of Ramsar (sheet 6163), scale 1:100000. Geological Survey of Iran

  20. Vahdati Daneshmand F, Nadim H (2001) Geological map of Marzan-Abad (sheet 6262), scale 1:100000. Geological Survey of Iran

  21. Vahdati Daneshmand F, Karimkhani A, Karimi H (2001) Geological map of Chalus (sheet 6263), scale 1:100000. Geological Survey of Iran

  22. Cartier EG (1971) Geology of the lower Chalus Valley, central Alborz, Iran. Geological Institute, ETH-Zurich, pp 1–164

    Google Scholar 

  23. ASTM (2005) Standard practice for soil sample preparation for the determination of radionuclides (C999), Vol. 12.01

  24. Raste PM, Sahoo BK, Bakshi AK, Patra AC, Sathian D, Beck M, Sonkawade RG (2020) A study on natural radioactivity and potential of 222 Rn, 220 Rn exhalation from Deccan table land of Kolhapur district, Maharashtra. India. J Radioanal Nucl Chem 326(2):1333–1341

    Article  CAS  Google Scholar 

  25. Doebelin N, Kleeberg R (2015) Profex: a graphical user interface for the Rietveld refinement program BGMN. J Appl Crystallogr 48(5):1573–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bergmann J, Friedel P, Kleeberg R (1998) BGMN-a new fundamental parameters based Rietveld program for laboratory X-ray sources, its use in quantitative analysis and structure investigations. Comm powder diffr Int Union Crystallogr CPD Newsl 20:5–8

    Google Scholar 

  27. Knoll GF (2010) Radiation detection and measurement. Wiley, New York

    Google Scholar 

  28. ASTM (2004) Standard practices for the measurement of radioactivity (D3648), vol 11.02

  29. Gilmore G (2011) Practical gamma-ray spectroscopy. Wiley, Chichester

    Google Scholar 

  30. Van Hao D, Dinh CN, Jodłowski P, Kovacs T (2019) High-level natural radionuclides from the Mandena deposit, South Madagascar. J Radioanal Nucl Chem 319(3):1331–1338

    Article  Google Scholar 

  31. Fior L, Corrêa JN, Paschuk SA, Denyak VV, Schelin HR, Pecequilo BS, Kappke J (2012) Activity measurements of radon from construction materials. Appl Radiat Isot 70(7):1407–1410

    Article  CAS  PubMed  Google Scholar 

  32. Hussain NA, Mhana WJ, Abdaljalil RO, Mohammed RS (2020) Estimation of annual effective dose due to radon emitted from soil samples in Southern of Iraq using Lexan SSNTDs. Neuro Quantol 18(3):16

    Google Scholar 

  33. Sohrabi M, Ebrahiminezhad F (2020) Novel multi-function polycarbonate/activated-carbon-fabric individual/environmental radon twin badges. Radiat Meas 134:106332

    Article  CAS  Google Scholar 

  34. Streckeisen A (1967) Classification and nomenclature of igneous rocks. N Jb Miner Abh 107:144–240

    CAS  Google Scholar 

  35. Middlemost EA (1994) Naming materials in the magma/igneous rock system. Earth-Sci Rev 37(3–4):215–224

    Article  CAS  Google Scholar 

  36. Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

    Article  CAS  Google Scholar 

  37. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks in Turkey. Contrib Mineral Petrol 68:63–81

    Article  Google Scholar 

  38. Maniar PD, Piccoli PM (1989) Tectonic discrimination diagrams of granitoids. Geol Soc Am Bull 101:635–643

    Article  CAS  Google Scholar 

  39. Hine RH, Williams IS, Chappell BW, White JR (1978) Geochemical contrast between I-and S-type granitoids of the Kosciusko Batholiths. J Geolo Soc Aust 25:219–234

    Article  CAS  Google Scholar 

  40. El-Mezayen AM, Heikal MA, El-Feky MG, Shahin HA, Zeid IA, Lasheen SR (2019) Petrology, geochemistry, radioactivity, and M-W type rare earth element tetrads of El Sela altered granites, south eastern desert, Egypt. Acta Geochim 38(1):95–119

    Article  CAS  Google Scholar 

  41. Emam A, Moghazy NM, El-Sherif AM (2011) Geochemistry, petrogenesis and radioactivity of El Hudi I-type younger granites, South Eastern Desert, Egypt. Arab J Geosci 4(5–6):863–878

    Article  CAS  Google Scholar 

  42. Condie KC (1973) Archean magmatism and crustal thickenning. Geol Soc Am Bull 84:2981–2992

    Article  CAS  Google Scholar 

  43. Shaw DM (1968) A review of K-Rb fractionation trends by covariance analyses. Geochim Cosmochim Acta 32:573–601

    Article  CAS  Google Scholar 

  44. Taylor SR (1965) The application of trace element data to problems in petrology. Phys Chem Earth 6:133–213

    Article  CAS  Google Scholar 

  45. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  CAS  Google Scholar 

  46. Mohammaden TF, Sadek AMA, Elhusseiny MO, Abdel Maabood AH (2016) Petrochemical and radioactive characteristics of El-Yatima monzogranite, Central Eastern Desert, Egypt. Nucl Sci Sci J 5(1):133–145

    Google Scholar 

  47. Mason B, Moore C (1982) Principles of geochemistry. Wiley, New York

    Google Scholar 

  48. Yu X, Lee CTA, Chen LH, Zeng G (2015) Magmatic recharge in continental flood basalts: insights from the Chifeng igneous province in Inner Mongolia. Geochem Geophys Geosyst 16(7):2082–2096

    Article  Google Scholar 

  49. Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59(7):1217–1232

    Article  CAS  Google Scholar 

  50. Barrat JA, Zanda B, Moynier F, Bollinger C, Liorzou C, Bayon G (2012) Geochemistry of CI chondrites: major and trace elements, and Cu and Zn isotopes. Geochim Cosmochim Acta 83:79–92

    Article  CAS  Google Scholar 

  51. Thompson RN (1982) Magmatism of the British Tertiary volcanic province. Scott J Geol 18(1):49–107

    Article  CAS  Google Scholar 

  52. Fawzy KM (2017) Characterization of a post orogenic A-type granite, Gabal El Atawi, Central Eastern Desert, Egypt: geochemical and radioactive perspectives. Open J Geol 7(01):93

    Article  CAS  Google Scholar 

  53. El-Mezayen AM, Heikal MA, Abu Zeid IK, El-Feky MG, Omar SM, Lasheen SR (2017) Petrography, geochemistry and radioactivity of El-Gidami granitic rocks, central eastern desert, Egypt. Al Azhar Bulletin of Science Vol. 9th. Conference, March, pp 27–41

  54. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62

    Article  CAS  Google Scholar 

  55. Saleh GM, Afify AM, Emad BM, Dawoud MI, Shahin HA, Khaleal FM (2019) Mineralogical and geochemical characterization of radioactive minerals and rare earth elements in granitic pegmatites at G. El Fereyid, South Eastern Desert, Egypt. J Afr Earth Sci 160:103651

    Article  CAS  Google Scholar 

  56. Khaleal FM, Kamar MS, El-Sherif AM (2017) Geology, geochemistry and radioactivity of the monzogranite rocks, north Wadi Ghadir, south eastern desert, Egypt. Nucl Sci Sci J 6(1):71–91

    Google Scholar 

  57. Clarke SPJR, Peterman ZE, Heier KS (1966) Abundances in uranium, thorium and potassium. In: Handbook of physical constants. Geolo Soc Am Mem 97, pp 521–541

  58. Sadek AEA, Saleh WH, Abu Zeid EK (2019) Mineralogy, chemistry and radioactivity of the anomalous quartz vein accompanying the western shear zone of Pas Abda granodiorite, north eastern desert, Egypt. Nucl Sci Sci J 8(1):79–97

    Google Scholar 

  59. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks. Blackwell, London

    Google Scholar 

  60. Dostal J, Chatterjee AK (2000) Contrasting behavior of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chem Geol 163:207–218

    Article  CAS  Google Scholar 

  61. Wang X, Griffin WL, Chen J (2010) Hf contents and Zr/Hf ratios in granitic zircons. Geochem J 44(1):65–72

    Article  CAS  Google Scholar 

  62. Yu X, Lee CTA, Chen LH, Zeng G (2015) Magmatic recharge in continental flood basalts: insights from the Chifeng igneous province in Inner Mongolia. Geochm Geophys Geosyst 16(7):2082–2096

    Article  Google Scholar 

  63. Force ER (1976) Titanium contents and titanium partitioning in rocks. US government printing office

  64. Kritsananuwat R, Sahoo SK, Fukushi M, Chanyotha S (2015) Distribution of rare earth elements, thorium and uranium in Gulf of Thailand’s sediments. Environ Earth Sci 73(7):3361–3374

    Article  CAS  Google Scholar 

  65. Rollinson HR (2014) Using geochemical data: evaluation, presentation, interpretation. Routledge, London, p 352

    Book  Google Scholar 

  66. Bi X, Cornell DH, Hu R (2002) REE composition of primary and altered feldspar from the mineralized alteration zone of alkaline intrusive rocks, western Yunnan Province, China. Ore Geol Rev 19(1–2):69–78

    Article  Google Scholar 

  67. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Developments in geochemistry, vol 2, pp 63–114

  68. Linnen RL, Samson I M, Williams-Jones AE, Chakhmouradian AR (2014) Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits. In: Treatise on geochemistry, 2nd edn, pp 543–568

  69. Jamali H (2017) The behavior of rare-earth elements, zirconium and hafnium during magma evolution and their application in determining mineralized magmatic suites in subduction zones: constraints from the Cenozoic belts of Iran. Ore Geol Rev 81:270–279

    Article  Google Scholar 

  70. Simmons WB, Hanson SL, Falster AU (2006) Samarskite-(Yb): a new species of the samarskite group from the Little Patsy pegmatite, Jefferson County, Colorado. Canad Mineral 44(5):1119–1125

    Article  CAS  Google Scholar 

  71. Mokhov AV, Kartashov PM Gornostaeva TA, Bogatikov OA (2011) Native ytterbium of regolith AS Luna-24. Doklady Earth Sciences, vol 441(2). SP MAIK Nauka/Interperiodica, pp 1692–1694

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farideh Amini Birami or Farid Moore.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4982 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini Birami, F., Moore, F. Arud granitic intrusion, the most probable source of radiation in high background natural radiation areas of Ramsar, North Iran. J Radioanal Nucl Chem 328, 1137–1151 (2021). https://doi.org/10.1007/s10967-021-07702-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07702-2

Keywords

Navigation