Skip to main content
Log in

Microstructure, dielectric properties and optical band gap control on the photoluminescence behavior of Ba[Zr0.25Ti0.75]O3 thin films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Ba[Zr0.25Ti0.75]O3 (BZT) thin films were synthesized by the complex polymerization method and heat treated at 400 °C for different times and at 700 °C for 2 h. These thin films were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, field emission gun-scanning electron microscopy (FEG-SEM) and atomic force microscopy (AFM), Ultraviolet–visible (UV–vis) absorption spectroscopy, electrical and photoluminescence (PL) measurements. FEG-SEM and AFM micrographs showed that the microstructure and thickness of BZT thin films can be influenced by the processing times. Dielectric constant and dielectric loss of BZT thin films heat treated at 700 °C were approximately 148 and 0.08 at 1 MHz, respectively. UV–vis absorption spectra suggested the presence of intermediary energy levels (shallow and deep holes) within the band gap of BZT thin films. PL behavior was explained through the optical band gap values associated to the visible light emission components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang C-F, Chen K-H, Chen Y-C, Chang T-C (2008) Appl Phys A 90:329

    Article  ADS  CAS  Google Scholar 

  2. Dixit A, Agrawal DC, Mohapatra YN, Majumder SB, Katiyar RS (2007) Mater Lett 61:3685

    Article  CAS  Google Scholar 

  3. Farhi R, El Marssi M, Simon A, Ravez J (1999) Eur Phys J B 9:599

    ADS  Google Scholar 

  4. Dixit A, Majumder SB, Savvinov A, Katiyar RS, Guo R, Bhalla AS (2002) Mater Lett 61:3685

    Article  Google Scholar 

  5. Yun P, Wang DY, Ying Z, Zhou XY, Tian HY, Wang Y, Chan HLW (2007) Ferroelectrics 357:121

    Article  CAS  Google Scholar 

  6. Marques LGA, Cavalcante LS, Simões AZ, Pontes FM, Santos-Júnior LS, Santos MRMC, Rosa ILV, Varela JA, Longo E (2007) Mater Chem Phys 105:293

    Article  CAS  Google Scholar 

  7. Zhai J, Hu D, Yao X, Xu Z, Chen H (2006) J Eur Ceram Soc 26:1917

    Article  CAS  Google Scholar 

  8. Zhu XH, Li J, Zheng DN (2007) Appl Phys Lett 90:142913

    Article  ADS  Google Scholar 

  9. Wu TB, Wu CM, Chen ML (1996) Appl Phys Lett 69:2659

    Article  ADS  CAS  Google Scholar 

  10. Xu J, Menesklou W, Ivers-Tiffée E (2004) J Electroceram 13:229

    Article  CAS  Google Scholar 

  11. Weber U, Greuel G, Boettger U, Weber S, Hennings D, Waser R (2001) J Am Ceram Soc 84:759

    Article  CAS  Google Scholar 

  12. Hennings D, Schnell A, Simon G (1982) J Am Ceram Soc 65:539

    Article  CAS  Google Scholar 

  13. Ravez J, Simon A (1997) Eur J Solid State Inorg Chem 34:1199

    CAS  Google Scholar 

  14. Tang XG, Chew K-H, Chan HLW (2004) Act Mater 52:5177

    Article  CAS  Google Scholar 

  15. Xu J, Gao C, Zhai J, Yao X, Xue J, Huang Z (2006) J Cryst Growth 291:130

    Article  ADS  CAS  Google Scholar 

  16. Liu A, Xue J, Meng X, Sun J, Huang Z, Chu J (2008) Appl Surf Sci 254:5660

    Article  ADS  CAS  Google Scholar 

  17. Tang XG, Chan HLW, Ding AL (2004) Thin Solid Films 460:227

    Article  ADS  CAS  Google Scholar 

  18. Cheng WX, Ding AL, He XY, Zheng XS, Qiu PS (2006) J Electroceram 16:523

    Article  CAS  Google Scholar 

  19. Xu J, Zhai J, Yao X (2007) Ferroelectrics 357:166

    Article  CAS  Google Scholar 

  20. Anicete-Santos M, Cavalcante LS, Orhan E, Paris EC, Simões LGP, Joya MR, Rosa ILV, de Lucena PR, Santos MRMC, Santos-Júnior LS, Pizani PS, Leite ER, Varela JA, Longo E (2005) Chem Phys 316:260

    Article  ADS  CAS  Google Scholar 

  21. Cavalcante LS, Gurgel MFC, Simões AZ, Longo E, Varela JA, Joya MR, Pizani PS (2007) Appl Phys Lett 90:011901

    Article  ADS  Google Scholar 

  22. Cavalcante LS, Gurgel MFC, Paris EC, Simões AZ, Joya MR, Varela JA, Pizani PS, Longo E (2007) Acta Mater 55:6416

    Article  CAS  Google Scholar 

  23. Zhai J, Yao X, Chen H (2004) Ceram Int 30:1237

    Article  CAS  Google Scholar 

  24. Zhai J, Yao X, Shen J, Zhang L, Chen H (2004) J Phys D: Appl Phys 37:748

    Article  ADS  CAS  Google Scholar 

  25. Pontes FM, Escote MT, Escudeiro CC, Leite ER, Longo E, Chiquito AJ, Pizani PS, Varela JA (2004) J Appl Phys 96:4386

    Article  ADS  CAS  Google Scholar 

  26. Jiwei Z, Xi Y, Liangying Z, Bo S, Chen H (2004) J Cryst Growth 262:341

    Article  ADS  Google Scholar 

  27. Zhang W, Tang XG, Wong KH, Chan HLW (2006) Scripta Mater 54:197

    Article  CAS  Google Scholar 

  28. Miao J, Yuan J, Wu H, Yang SB, Xu B, Cao LX, Zhao BR (2007) Appl Phys Lett 90:022903

    Article  ADS  Google Scholar 

  29. Gao LN, Song SN, Zhai JW, Yao X, Xu ZK (2008) J Cryst Growth 310:1245

    Article  ADS  CAS  Google Scholar 

  30. Lan W-A, Wang T-C, Huang L-H, Wu T-B (2006) Appl Phys Lett 89:022910

    Article  ADS  Google Scholar 

  31. Choi WS, Yi J, Hong B (2004) Mater Sci Eng B 109:146

    Article  Google Scholar 

  32. Choi WS, Boo JH, Yi J, Hong B (2002) Mater Sci Semi Proc 5:211

    Article  CAS  Google Scholar 

  33. Ostos C, Martínez-Sarrión ML, Mestres L, Cortés A, Delgado E, Prieto P (2006) Braz J Phys 36:1062

    Google Scholar 

  34. Gao L, Zhai J, Yao X (2008) Ceram Int 34:1023

    Article  CAS  Google Scholar 

  35. Jie WJ, Zhu J, Qin WF, Wei XH, Xiong J, Zhang Y, Bhalla A, Li YR (2007) J Phys D: Appl Phys 40:2854

    Article  ADS  CAS  Google Scholar 

  36. Kakihama M (1996) J Sol-Gel Sci Technol 6:7

    Article  Google Scholar 

  37. http://www.icdd.com/profile/overview.htm

  38. Zhai J, Gao C, Yao X, Xu Z, Chen H (2008) Ceram Int 34:905

    Article  CAS  Google Scholar 

  39. Park Y, Jeong SM, Moon SIl, Jeong KW, Kim SH, Song JT, Yi J (1999) Jpn J Appl Phys 38:6801

    Article  ADS  CAS  Google Scholar 

  40. Chakrabarti N, Maiti HS (1996) J Mater Chem 6:1169

    Article  CAS  Google Scholar 

  41. Chen C, Zhu W, Yu T, Chen X, Yao X, Krishnan RG (2003) Surf Coat Technol 167:245

    Article  CAS  Google Scholar 

  42. Last JT (1957) Phys Rev 105:1740

    Article  ADS  CAS  Google Scholar 

  43. Cavalcante LS, Anicete-Santos M, Pontes FM, Souza IA, Santos LPS, Rosa ILV, Santos MRMC, Santos-Júnior LS, Leite ER, Longo E (2007) J Alloys Comp 437:269

    Article  CAS  Google Scholar 

  44. Choi WS, Jang BS, Roh Y, Yi J, Hong B (2002) J Non-Cryst Solids 303:190

    Article  CAS  Google Scholar 

  45. Leite ER, Varela JA, Longo E, Paskocimas CA (1995) Ceram Int 21:153

    Article  CAS  Google Scholar 

  46. Stankus V, Dudonis J, Pranevicius L, Praneviius LL, Milcius D, Templier C, Riviere J-P (2003) Thin Solid Films 426:78

    Article  ADS  CAS  Google Scholar 

  47. Jiwei Z, Xi Y, Bo S, Liangying Z, Chen H (2003) J Electroceram 11:157

    Article  Google Scholar 

  48. Cavalcante LS, Anicete-Santos M, Sczancoski JC, Simões LGP, Santos MRMC, Varela JA, Pizani PS, Longo E (2008) J Phys Chem Solids 69:1782

    Article  ADS  CAS  Google Scholar 

  49. Gouvêa D, Castro RHR (2003) App Surf Sci 217:194

    Article  ADS  Google Scholar 

  50. Schintke S, Messerli S, Pivetta M, Patthey F, Libioulle L, Stengel M, De Vita A, Schneider W-D (2001) Phys Rev Lett 87:276801

    Article  PubMed  ADS  CAS  Google Scholar 

  51. http://www.thomaschi.com/dicom/di_index.html

  52. http://www.gimp.org/

  53. Sakamoto W, Mimura K-I, Naka T, Shimura T, Yogo T (2007) J Sol-Gel Sci Technol 42:213

    Article  CAS  Google Scholar 

  54. Tang XG, Wang XX, Wong KH, Chan HLW (2005) Appl Phys A 81:1253

    ADS  Google Scholar 

  55. Dixit A, Majumder SB, Dobal PS, Katiyar RS, Bhalla AS (2004) Thin Solid Films 30:447

    Google Scholar 

  56. Choi WS, Jang BS, Lim D-G, Yi J, Hong B (2002) J Cryst Growth 237:438

    Article  ADS  Google Scholar 

  57. Pantou R, Dubourdieu C, Weiss F, Kreisel J, Kobernik G, Haessler W (2003) Mater Sci Semicond Process 5:237

    Article  Google Scholar 

  58. Zhu J, Jie WJ, Wei XH, Qin WF, Zhang Y, Li YR (2008) Surf Rev Lett 15:29

    Article  CAS  Google Scholar 

  59. Xu J, Shen B, Gao L, Zhai J, Yao X (2008) Cryst Growth Des 8:1766

    Article  CAS  Google Scholar 

  60. Qin WF, Zhu J, Xiong J, Tang JL, Jie WJ, Zhang Y, Li YR (2008) Surf Rev Lett 15:185

    Article  Google Scholar 

  61. Wood DL, Tauc J (1972) Phys Rev B 5:3144

    Article  ADS  Google Scholar 

  62. http://www.systat.com/products/PeakFit/

  63. Luo L, Ren HZ, Tang XG, Ding CR, Wang HZ, Chen XM, Jia JK, Hu ZF (2008) J Appl Phys 104:043514

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support of the Brazilian research financing institutions: CAPES, CNPq and FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Cavalcante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalcante, L.S., Sczancoski, J.C., De Vicente, F.S. et al. Microstructure, dielectric properties and optical band gap control on the photoluminescence behavior of Ba[Zr0.25Ti0.75]O3 thin films. J Sol-Gel Sci Technol 49, 35–46 (2009). https://doi.org/10.1007/s10971-008-1841-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1841-x

Keywords

Navigation