Skip to main content
Log in

Effect of seeded substrates on hydrothermally grown ZnO nanorods

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We report a study on the effect of seeding on glass substrates with zinc oxide nanocrystallites towards the hydrothermal growth of ZnO nanorods from a zinc nitrate hexahydrate and hexamethylenetetramine solution at 95 °C. The seeding was done with pre-synthesized ZnO nanoparticles in isopropanol with diameters of about 6–7 nm as well as the direct growth of ZnO nanocrystallites on the substrates by the hydrolysis of pre-deposited zinc acetate film. The nanorods grown on ZnO nanoparticle seeds show uniform dimensions throughout the substrate but were not homogenously aligned vertically from the substrate and appeared like nanoflowers with nanorod petals. Nanorods grown from the crystallites formed in situ on the substrates displayed wide variations in dimension depending upon the preheating and annealing conditions. Annealing the seed crystals below 350 °C led to scattered growth directions whereupon preferential orientation of the nanorods perpendicular to the substrates was observed. High surface to volume ratio which is vital for gas sensing applications can be achieved by this simple hydrothermal growth of nanorods and the rod height and rod morphology can be controlled through the growth parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang J, Sun L, Pan H, Liao C, Yan C (2002) N J Chem 26:33. doi:10.1039/b108172a

    Article  MATH  CAS  Google Scholar 

  2. Hornyak GL, Dutta J, Tibbals HF, Rao AK (2008) Introduction to nanoscience. Taylor & Francis, NY

    Google Scholar 

  3. Xu J, Chen Y, Li Y, Shen J (2005) J Mater Sci 40:2919. doi:10.1007/s10853-005-2435-4

    Article  CAS  Google Scholar 

  4. Hossain MK, Ghosh SC, Boontongkong Y, Thanachayanont C, Dutta J, Metastable Nanocryst J (2005) Mater 23:27

    CAS  Google Scholar 

  5. Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nature. Mater Lett 4:455

    CAS  Google Scholar 

  6. Wang X, Song J, Liu J, Wang ZL (2007) Science 316:102. doi:10.1126/science.1139366

    Article  PubMed  ADS  CAS  Google Scholar 

  7. Zhang Y, Yu K, Ouyang S, Zhu Z (2006) Mater Lett 60:522. doi:10.1016/j.matlet.2005.09.028

    Article  CAS  Google Scholar 

  8. Vayssieres L, Keis K, Lindquist SE, Hagfeldt A (2001) J Phys Chem B 105:3350. doi:10.1021/jp010026s

    Article  CAS  Google Scholar 

  9. Greene LE, Law M, Goldberger J, Kim F, Johnson JC, Zhang Y, Saykally RJ, Yang P (2003) Angew Chem Int Ed 42:3031. doi:10.1002/anie.200351461

    Article  CAS  Google Scholar 

  10. Sugunan A, Warad HC, Boman M, Dutta J (2006) J Sol-Gel Sci Technol 39:49. doi:10.1007/s10971-006-6969-y

    Article  CAS  Google Scholar 

  11. Shi G, Mo CM, Cai WL, Zhang LD (2005) Solid State Commun 115:253. doi:10.1016/S0038-1098(00)00169-1

    Article  ADS  Google Scholar 

  12. Baruah S, Thanachayanont C, Dutta J (2008) Sci Technol Adv Mater 9:025009. doi:10.1088/1468-6996/9/2/025009

    Article  CAS  Google Scholar 

  13. Cross RBM, De Souza MM, Narayanan EMS (2005) Nanotechnology 16:2188. doi:10.1088/0957-4484/16/10/035

    Article  ADS  CAS  Google Scholar 

  14. Bahnemann DW, Kormann C, Hofmann R (1987) J Phys Chem 91:3789. doi:10.1021/j100298a015

    Article  CAS  Google Scholar 

  15. Chaudret B (2005) C R Phys 6:117. doi:10.1016/j.crhy.2004.11.008

    Article  ADS  CAS  Google Scholar 

  16. Jafri SHM, Sharma AB, Thanachayanont C, Dutta J (2006) Mater Res Soc Symp Proc vol 901E

  17. Claesson EM, Philipse AP (2007) Colloids Surf A Physicochem Eng Asp 297:46. doi:10.1016/j.colsurfa.2006.10.019

    Article  CAS  Google Scholar 

  18. Baruah S, Rafique RF, Dutta J (2008) Nano 3:1

    Article  Google Scholar 

  19. Dutta J, Hofmann H (2004) Self Organization of Colloidal Nanoparticles, Encyclopedia of Nanoscience & Nanotechnology 9:617 ed. H. S. Nalwa, American Scientific Publishers, USA

    Google Scholar 

  20. Wang M, Zhang L (2009) Mater Lett 63:301. doi:10.1016/j.matlet.2008.10.022

    Article  CAS  Google Scholar 

  21. Santos AMP, Santos EJP (2008) Thin Solid Films 516:6210. doi:10.1016/j.tsf.2007.11.111

    Article  ADS  CAS  Google Scholar 

  22. Wei M, Zhi D, MacManus-Driscoll JL (2005) Nanotechnology 16:1364. doi:10.1088/0957-4484/16/8/064

    Article  ADS  CAS  Google Scholar 

  23. Paraguay FD, Estrada WL, Acosta DRN, Andrade E, Miki-Yoshida M (1999) M. Thin Solid Films 350:192. doi:10.1016/S0040-6090(99)00050-4

    Article  ADS  Google Scholar 

  24. Hochepied JF, de Oliveira APA, Guyot-Ferreol V, Tranchant JF (2005) J Cryst Growth 283:156. doi:10.1016/j.jcrysgro.2005.05.051

    Article  ADS  CAS  Google Scholar 

  25. Lima RC, Macario LR, Espinosa JWM, Longo VM, Erlo R, Marana NL, Sambrano JR, dos Santos ML, Moura AP, Pizani PS, Andrés J, Longo E, Varela JA (2008) J Phys Chem A 112:8970. doi:10.1021/jp8022474

    Article  PubMed  CAS  Google Scholar 

  26. Baruah S, Dutta J (2009) Sci Technol Adv Mater 10:013001. doi:10.1088/1468-6996/10/1/013001

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge partial financial support from the National Nanotechnology Center, belonging to the National Science & Technology Development Agency (NSTDA), Ministry of Science and Technology (MOST), Thailand and the Centre of Excellence in Nanotechnology at the Asian Institute of Technology, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Dutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baruah, S., Dutta, J. Effect of seeded substrates on hydrothermally grown ZnO nanorods. J Sol-Gel Sci Technol 50, 456–464 (2009). https://doi.org/10.1007/s10971-009-1917-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-1917-2

Keywords

Navigation