Skip to main content
Log in

Synthesis and characterization of lead oxide nano-powders by sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Our goal in this research was to obtain lead oxide nano-powders by sol–gel method. In this method, lead oxide nano-powders were synthesized through the reaction of citric acid (C6H7O8·H2O) solution and lead acetate [Pb(C2H3O2)2] solution as stabilizer and precursor, respectively. The effect of different parameters including calcination temperature, (molar ratio of citric acid to lead acetate) and drying conditions were investigated. The prepared lead oxide nano-powders were characterized by FT-IR spectroscopy, X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The prepared PbO samples consist of the particles in the range of 50–120 nm or the thick plate like structures with thickness of 53 nm depending on the drying conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Keating CD, Natan MJ (2003) Adv Mater 45:451–454

    Article  Google Scholar 

  2. Chen LJ, Zhang SM, Wu ZS, Zhamg ZJ, Dang HX (2005) Mater Lett 59:3119–3121

    Article  CAS  Google Scholar 

  3. Salavati-Niasari M, Mohandes F, Davar F (2009) Polyhedron 28:2263–2267

    Article  CAS  Google Scholar 

  4. Ferg EE, Phangalala T, Dyl T (2010) J Appl Electrochem 40:383–391

    Article  CAS  Google Scholar 

  5. Ghasemi S, Mousavi MF, Shamsipur M, Karami H (2008) Ultrason Sonochem 15:448–455

    Article  CAS  Google Scholar 

  6. Xi G, Peng Y, Xu L, Zhang M, Yu W, Qian Y (2004) Inorg Chem Commun 7:607–610

    Article  CAS  Google Scholar 

  7. Karami H, Karami MA, Haghdar S, Sadeghi A, Mir-Ghasemi R, Mahdi-Khani S (2008) Mater Chem Phys 108:337–344

    Article  CAS  Google Scholar 

  8. Lafronta AM, Zhanga W, Ghalia E, Houlachib G (2010) Electrochem Acta 55:6665–6675

    Article  Google Scholar 

  9. Karami H, Karami MA, Haghdar S (2008) Mater Res Bull 43:3054–3065

    Article  CAS  Google Scholar 

  10. Martos M, Mortales J, Sanchez L, Ayouchi R, Leinen D, Martin F, Ramos Barrado JR (2001) Electrochim Acta 46:2939–2948

    Article  CAS  Google Scholar 

  11. Soria ML, Valeciano J, Ojeda A (2004) J Power Sour 136:376–382

    Article  CAS  Google Scholar 

  12. Yeh CH, Wan CC, Chen JS (2001) J Power Sour 101:219–225

    Article  CAS  Google Scholar 

  13. Marco D, Lowe A, Sercombe M, Singh P (2006) Electrochim Acta 51:2088–2095

    Article  Google Scholar 

  14. Shiota M, Kameda T, Matsui K, Hirai N, Tanaka T (2005) J Power Sour 144:358–364

    Article  CAS  Google Scholar 

  15. Hashemi L, Morsali A, Retailleau P (2011) Inorg Chim Acta 367:207–211

    Article  CAS  Google Scholar 

  16. Konstantinov K, Nga SH, Wang JZ, Wang GX, Wexler D, Liu HK (2006) J Power Sour 159:241–244

    Article  CAS  Google Scholar 

  17. Cao M, Hu C, Peng G, Qi Y, Wang E (2003) J Am Chem Soc 125:4982–4983

    Article  CAS  Google Scholar 

  18. Shi L, Xu Y, Li Q (2008) Cryst Growth Des 8:3521–3525

    Article  CAS  Google Scholar 

  19. Aboutorabi L, Morsali A (2011) Ultrason Sonochem 18:407–411

    Article  CAS  Google Scholar 

  20. Aslani A, Morsali A (2009) Inorg Chim Acta 362:5012–5016

    Article  CAS  Google Scholar 

  21. Sadeghzadeh H, Morsali A, Yilmaz VT, Buyukgungar O (2010) Inorg Chim Acta 362:841–845

    Article  Google Scholar 

  22. Sadeghzadeh H, Morsali A, Yilmaz VT, Buyukgungar O (2010) Ultrason Sonochem 17:592–597

    Article  CAS  Google Scholar 

  23. Sadeghzadeh H, Morsali A (2010) J Coord Chem 63:713–720

    Article  CAS  Google Scholar 

  24. Raju VSR, Murthy SR (2006) J Mater Sci 41:1475–1479

    Article  CAS  Google Scholar 

  25. Li S, Yanga W, Chen M, Gao J, Kang J, Qi Y (2005) Mater Chem Phys 90:262–269

    Article  CAS  Google Scholar 

  26. Sadeghzadeh H, Morsali A, Yilmaz VT, Buyukgungor O (2010) Mater Lett 64:810–813

    Article  CAS  Google Scholar 

  27. Haddadian H, Aslani A, Morsali A (2009) Inorg Chim Acta 362:1805–1809

    Article  CAS  Google Scholar 

  28. Sadeghzadeh H, Morsali A, Retailleau P (2010) Polyhedron 29:925–933

    Article  CAS  Google Scholar 

  29. Karami H, Alipour M (2009) J Power Sour 191:653–661

    Article  CAS  Google Scholar 

  30. Graca MP, Silva CC, Costa LC, Sombra AB, Valenta MA (2010) J Non Cryst Solids 356:607–610

    Article  CAS  Google Scholar 

  31. Zheng XS, Li JH (2010) J Sol–Gel Technol 54:174–187

    Article  CAS  Google Scholar 

  32. Scherrer P (1918) Nachr Gottinger Gesell 2:98–100

    Google Scholar 

  33. Eshaghi A, Pakshir M, Mozaffarinia R (2010) J Sol–Gel Sci Technol 55:278–284

    Article  CAS  Google Scholar 

  34. Dupont A, Parent C, Le Garrenc B, Heintz JM (2003) J Solid State Chem 171:152–160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the partial financial support from the Research Council of Iran University of Science and Technology (IUST), Iran. We also thank Dr. Mohammad G. Dekamin, Department of Chemistry, Iran University of Science and Technology (IUST) for his assistance with preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Kashani-Motlagh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashani-Motlagh, M.M., Mahmoudabad, M.K. Synthesis and characterization of lead oxide nano-powders by sol–gel method. J Sol-Gel Sci Technol 59, 106–110 (2011). https://doi.org/10.1007/s10971-011-2467-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2467-y

Keywords

Navigation