Skip to main content
Log in

Room temperature ferromagnetism in sol–gel deposited un-doped ZnO films

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Dilute magnetic semiconductors are fast emerging spintronic materials where advantage of magnetic properties of semiconductor materials (usually doped with small quantities of magnetic ions) is being explored. Sol–gel technique, being low-cost simple and application oriented method, has been used in the present case. ZnO films of <150 nm thickness have been deposited by spin coating onto single crystal p-type Si substrates. The optimized sol is of paramagnetic nature, whereas, mixed para- dia-magnetic phase is observed for the as-prepared films. A complete ferromagnetic phase transition has been observed after heating the films in vacuum at a temperature of 300 °C. These sol–gel prepared films exhibit hexagonal wurtzite structure as observed by X-ray diffraction. After the magnetic field annealing in vacuum the films showed strengthened magnetic as well as structural properties. This work presents a clear evidence of ferromagnetic behavior of the un-doped ZnO films deposited by sol–gel at room temperature. It is also pointed out that Zn vacancies rather than oxygen deficiency are responsible for ferromagnetism in these sol–gel deposited ZnO thin films, whereas, the experimental evidence has been substantiated with the theoretical calculations using density functional theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, Molnár SV, Roukes ML, Chtchlkanova AY, Treger DM (2001) Science 294:1488–1495

    Article  CAS  Google Scholar 

  2. Lakshmi YK, Srinivas K, Sreedhar B, Raja MM, Vithal M, Reddy PV (2009) Mat Chem Phys 113:749–755

    Article  CAS  Google Scholar 

  3. Ahn D, Park SH, Park EH, Yoo TK (2006) IEEE Phot Tech Lett 18:349–351

    Article  CAS  Google Scholar 

  4. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Science 287:1019–1022

    Article  CAS  Google Scholar 

  5. Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T (2004) J Vac Sci Technol B 22:932–949

    Article  CAS  Google Scholar 

  6. Xu HY, Liu YC, Xu CS, Liu YX, Shao CL, Mu R (2006) Appl Phys Lett 88:242502–242505

    Article  Google Scholar 

  7. Hou DL, Ye XJ, Meng HJ, Zhou HJ, Li XL, Zhen CM, Tang GD (2007) Appl Phys Lett 90:142502–142505

    Article  Google Scholar 

  8. Dietl T (2003) Nat Mater 2:645–646

    Article  Google Scholar 

  9. Chou H, Lin CP, Huang JCA, Hsu HS (2008) Phys Rev B 77:245210–245216

    Article  Google Scholar 

  10. Ziese M, Thornton MJ (2001) Spin electronics. Springer, Berlin

    Book  Google Scholar 

  11. Priour DJ, Hwang EH, Sarma SD (2004) Phys Rev Lett 92:117201–117205

    Article  Google Scholar 

  12. Kevin RK, Schwartz DA, Tuan AC, Heald SM, Chambers SA, Gamelin DR (2006) Phys Rev Lett 97:037203–037207

    Article  Google Scholar 

  13. Griffin KA, Pakhomov AB, Wang CM, Heald SM, Krishnan KM (2005) Phys Rev Lett 94:157204–157208

    Article  CAS  Google Scholar 

  14. Chambers SA, Schwartz DA, Liu WK, Kittilstved KR, Gamelin DR (2007) Appl Phys A: Mater Sci Proc 88(1):1–5

    Article  CAS  Google Scholar 

  15. Chattopadhyay A, Sarma SD, Millis AJ (2001) Phys Rev Lett 87:227202–227205

    Article  CAS  Google Scholar 

  16. Calderon MJ, Santos GG, Brey L (2002) Phys Rev B 66:075218–075227

    Article  Google Scholar 

  17. Kaminski A, Sarma SD (2002) Phys Rev Lett 88:247202–247206

    Article  CAS  Google Scholar 

  18. Toyosaki H, Fukumura T, Yamada Y, Nakajima K, Chikyow T, Hasegawa T, Koinuma H, Kawasaki M (2004) Nat Mater 3:221–224

    Article  CAS  Google Scholar 

  19. Huang JCA, Hsu HS, Hu YM, Lee CH, Huang YH, Lin MZ (2004) Appl Phys Lett 85:3815–3818

    Article  CAS  Google Scholar 

  20. Hsu HS, Huang JCA, Huang YH, Liao YF, Lin MZ, Lee CH, Lee JF, Chen SF, Lai LY, Liu CP (2006) Appl Phys Lett 88:242507–242510

    Article  Google Scholar 

  21. Wang Q, Sun Q, Chen G, Kawazoe Y, Jena P (2008) Phys Rev B 77:205411–205418

    Article  Google Scholar 

  22. Hong NH, Sakai J, Brize V (2007) J Phys: Condens Matt 19:036219–036223

    Article  Google Scholar 

  23. Riaz S, Naseem S (2009) Int J Mat Res 2:234–237

    Google Scholar 

  24. Puri RK, Babbar VK (2003) Solid state physics and electronics. S. Chand and Company Ltd., India

    Google Scholar 

  25. Ozdemir T, Sandal D, Culha M, Sanyal A, Atay NZ, Bucak S (2010) Nanotechnology 21:125603–125607

    Article  Google Scholar 

  26. Williams PS, Carpino F, Zborowski M (2010) Phil Trans R Soc A 368:4419–4437

    Article  CAS  Google Scholar 

  27. Garcia MA, Merino JM, Pinel EF, Quesada A, Venta JD, Gonzalez MLR, Castro GR, Crespo P, Llopis J, Calbet JM, Hernando A (2007) Nano Lett 7:1489–1494

    Article  CAS  Google Scholar 

  28. Zhou XY, Ge SH, Yao DS, Zuo YL, Xiao YHJ (2007) J Alloys Compd 463:L9–L12

    Article  Google Scholar 

  29. Marcet S, Pacuski W, Sarigiannidou E, Wilhelm F, Ferrand D, Kuroda S, Galera RM, Gheeraert E, Cibert J, Rogalev A, Mariette H, Kossacki P (2006) Phys Stat Sol 3:4062–4065

    Article  CAS  Google Scholar 

  30. Ghosh A, Deshpande NG, Gudage YG, Joshi RA, Sagade AA, Phase DM, Sharma R (2009) J Alloys Compd 469:56–60

    Article  CAS  Google Scholar 

  31. Jiang Y, Yan W, Sun Z, Liu Q, Pan Z, Yao T, Li Y, Qi Z, Zhang G, Xu P, Wu Z, Wei S (2009) J Phys Conf Ser 190:012100–012107

    Article  Google Scholar 

  32. Gacic M, Jakob G, Herbort C, Adrian H (2007) Phys Rev B 75:205206–205214

    Article  Google Scholar 

  33. Xu Q, Schmidt H, Zhou S, Potzger K (2008) Appl Phy Lett 92:082508–082511

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Naseem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riaz, S., Naseem, S. & Xu, Y.B. Room temperature ferromagnetism in sol–gel deposited un-doped ZnO films. J Sol-Gel Sci Technol 59, 584–590 (2011). https://doi.org/10.1007/s10971-011-2532-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2532-6

Keywords

Navigation