Skip to main content
Log in

Aqueous route to TiO2-based nanomaterials using pH-neutral carboxylate precursors

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The review presents the industrial and laboratory synthesis, molecular structure and reactivity of titanium(IV) carboxylate complexes stable in aqueous medium. A special accent is made on the solution ligand-transfer equilibria that are able to provide uniform TiO2 nanoparticles under rather mild conditions starting from these easily commercially available species. Application of titanium oxide nanostructures derived from solution-generated titania nanoparticles is described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang CB, Liu FD, Zhai YP, Ariga H, Yi N, Liu YC, Asakura K, Flytzani-Staphanopoulos M, He H (2012) Angew Chem 51:9628–9632

    Article  Google Scholar 

  2. Di Paola A, Garcia-Lopez E, Marci G, Palmisano L (2012) J Hazard Mater 211:3–29

    Article  Google Scholar 

  3. Marugán J, Hufschmidt D, Sagawe G, Selzer V, Bahnemann D (2006) Water Res 40:833–839

    Article  Google Scholar 

  4. Jin YH, Lee SH, Shim HW, Ko KH, Kim DW (2010) Electrochim Acta 55:7315–7321

    Article  Google Scholar 

  5. Serventi AM, Rodrigues IR, Trudeau ML, Antonelli D, Zaghib K (2012) J Power Sour 202:357–363

    Article  Google Scholar 

  6. Erjavec B, Dominko R, Umek P, Sturm S, Pintar A, Gaberscek M (2009) J Power Sour 189:869–874

    Article  Google Scholar 

  7. Kibsgaard J, Clausen BS, Topsøe H, Lægsgaard E, Lauritsen JV, Besenbacher F (2009) J Catal 263:98–103

    Article  Google Scholar 

  8. Takahashi N, Suda A, Hachisuka I, Sugiura M, Sobukawa H, Shinjoh H (2007) Appl Catal B Environ 72:187–195

    Article  Google Scholar 

  9. Luo T, Cui JL, Hu S, Huang YY, Jing CY (2010) Env Sci Technol 44:9094–9098

    Article  Google Scholar 

  10. Ma WF, Zhang Y, Li LL, You LJ, Zhang P, Zhang YT, Li JM, Yu M, Guo J, Lu HJ, Wang CC (2012) ACS Nano 6:3179–3188

    Article  Google Scholar 

  11. Chen Y, Yi Y, Brennan JD, Brook MA (2006) Chem Mater 18:864–866

    Article  Google Scholar 

  12. Kessler VG, Seisenbaeva GA, Håkannson S, Unell M (2008) Angew Chem 47:8506–8509

    Article  Google Scholar 

  13. Yang SH, Ko EH, Choi I (2012) Langmuir 28:2151–2155

    Article  Google Scholar 

  14. Seisenbaeva GA, Moloney MP, Tekoriute R, Hardy-Dessource A, Nedelec J-M, Gun’ko YK, Kessler VG (2010) Langmuir 26:9809–9817

    Article  Google Scholar 

  15. Fukuda H, Ishikawa Y, Namioka S, Nomura S (1999) MRS Proc 606:163

    Article  Google Scholar 

  16. Masuda Y, Jinbo Y, Koumoto K (2009) Sci Adv Mater 1:138–143

    Article  Google Scholar 

  17. Lee JP, Park MH, Chung TM, Kim Y, Sung MM (2004) Bull Korean Chem Soc 25:475–479

    Article  Google Scholar 

  18. Hakim SH, Shanks BH (2009) Chem Mater 21:2027–2038

    Article  Google Scholar 

  19. Dapsens PY, Hakim SH, Su BL, Shanks BH (2010) Chem Commun 46:8980–8982

    Article  Google Scholar 

  20. Corriu RJP, Leclerq D, Lefevre R, Mutin PH, Vioux AJ (1992) J Mater Chem 2:673–674

    Article  Google Scholar 

  21. Seisenbaeva GA, Daniel G, Nedelec JM, Gun’ko YK, Kessler VG (2012) J Mater Chem 22:20374–20380

    Article  Google Scholar 

  22. Dickerson MB, Sandhage K, Naik RR (2008) Chem Rev 108:4935–4978

    Article  Google Scholar 

  23. Fu YL, Liu YL, Shi Z, Li BZ, Pang WQ (2002) J Solid State Chem 163:427–435

    Article  Google Scholar 

  24. Groenke N, Seisenbaeva GA, Kaminsky VV, Zhivotovsky B, Kost B, Kessler VG (2012) RSC Adv 2:4228–4235

    Article  Google Scholar 

  25. Corbin DR, Griffin TP, Hutchenson KW, Li S, Shiflett MB, Torardi C, Zaher JJ (2012) Processes for producing titanium dioxide. US Patent 8,137,647, 20 March 2012

  26. Kroll WJ (1940) Trans Electrochem Soc 78:35–47

    Article  Google Scholar 

  27. Hardy A, D’Haen J, Van Bael MK, Mullens J (2007) J Sol-Gel Sci Tech 44:65–74

    Article  Google Scholar 

  28. Tomita K, Petrykin V, Kobayashi M, Shiro M, Yoshimura M, Kakihana M (2006) Angew Chem Int Ed 45:2378–2381

    Article  Google Scholar 

  29. Kakihana M, Tomita K, Petrykin V, Tada M, Sasaki S, Nakamura Y (2004) Inorg Chem 43:4546–4548

    Article  Google Scholar 

  30. Seisenbaeva GA, Daniel G, Nedelec JM, Kessler VG (2013) Nanoscale (submitted)

  31. Deng YF, Jiang YQ, Hong QM, Zhou ZH (2007) Polyhedron 26:1561–1569

    Article  Google Scholar 

  32. Kakihana M, Tada M, Shiro M, Petrykin V, Osada M, Nakamura Y (2001) Inorg Chem 40:891–894

    Article  Google Scholar 

  33. Turova NY, Turevskaya EP, Kessler VG, Yanovskaya MI (2002) The chemistry of metal alkoxides. Kluwer, Boston

    Google Scholar 

  34. Tomita H, Kakihana M (2003) Trans Mater Res Soc Jpn 28:377–380

    Google Scholar 

  35. Kandiel TA, Feldhoff A, Robben L, Dillert R, Bahnemann DW (2010) Chem Mater 22:2050–2060

    Article  Google Scholar 

  36. Johnson JM, Kinsinger N, Sun C, Li DS, Kisailus D (2012) J Amer Chem Soc. doi:10.1021/ja306884e

  37. Kim JH, Fujita S, Shiratori S (2006) Thin Solid Films 499:83–89

    Article  Google Scholar 

  38. Kim JH, Fujita S, Shiratori S (2006) Coll Surf A Physicochem Eng Aspects 284–285:290–294

    Article  Google Scholar 

  39. Shi XY, Cassagneau T, Caruso F (2002) Langmuir 18:904–910

    Article  Google Scholar 

  40. Zhao CX, Yu L, Middelberg APJ (2012) RSC Adv 2:1292–1295

    Article  Google Scholar 

  41. Kessler VG, Spijksma GI, Seisenbaeva GA, Håkansson S, Blank DHA, Bouwmeester HJM (2006) J Sol-Gel Sci Tech 40:163–179

    Article  Google Scholar 

  42. Kessler VG (2009) J Sol-Gel Sci Tech 51:264–271

    Article  Google Scholar 

  43. Möckel H, Giersig M, Willig F (1999) J Mater Chem 9:3051–3056

    Article  Google Scholar 

  44. Matolygina DA, Baranchikov AE, Ivanov VK, Tret’yakov YD (2011) Dokl Chemistry 441:485–488

    Article  Google Scholar 

  45. Kinsinger NM, Wong A, Li DS, Villalobos F, Kisailus D (2010) Cryst Growth Design 10:5254–5261

    Article  Google Scholar 

  46. Zhang ZC, Brown S, Goodall JBM, Weng XL, Thompson K, Gonga K, Kellici S, Clark RJH, Evans JRG, Darr JA (2009) J Alloys Comp 476:451–456

    Article  Google Scholar 

  47. Kröger N, Dickerson MB, Ahmad G, Cai Y, Haluska MS, Sandhage KH, Poulsen N, Sheppard VC (2006) Angew Chem Int Ed 45:7239–7243

    Article  Google Scholar 

  48. Lou Q, Chinthamanipeta PS, Shipp DA (2011) Langmuir 27:15206–15212

    Article  Google Scholar 

  49. Chigane M, Shinagawa T (2012) Thin Solid Films 520:3510–3514

    Article  Google Scholar 

  50. Bhosale R, Hyam R, Dhanya P, Ogale S (2011) Dalton Trans 40:11374–11377

    Article  Google Scholar 

  51. Rohe M, Merz K (2008) Chem Commun 862–864

  52. Rohe M, Loffler E, Muhler M, Birkner A, Woll C, Merz K (2008) Dalton Trans 6106–6109

  53. Sumerel JL, Yang WJ, Kisailus D, Weaver JC, Choi JH, Morse DE (2003) Chem Mater 15:4804–4809

    Article  Google Scholar 

  54. Jiang YJ, Yang D, Zhang L, Li L, Sun QY, Zhang YF, Li J, Jiang ZG (2008) Dalton Trans 4165–4171

  55. Sewell SL, Wright DW (2006) Chem Mater 18:3108–3113

    Article  Google Scholar 

  56. Sewell SL, Rutledge RD, Wright DW (2008) Dalton Trans 3857–3865

  57. Smith GP, Baustian KJ, Ackerson CJ, Feldheim DL (2009) J Mater Chem 19:8299–8306

    Article  Google Scholar 

  58. Dickerson MB, Jones SE, Cai Y, Ahmad G, Naik RR, Kröger N, Sandhage KH (2008) Chem Mater 20:1578–1584

    Article  Google Scholar 

  59. Kröger N, Sandhage KH (2010) MRS Bull 35:122–126

    Article  Google Scholar 

  60. Kharlampieva E, Tsukruk T, Slocik JM, Ko H, Poulsen N, Naik RR, Kröger N, Tsukruk VV (2008) Adv Mater 20:3274–3279

    Article  Google Scholar 

  61. Hong J, Kang SW (2010) Ind Eng Chem Res 49:9124–9127

    Article  Google Scholar 

  62. Katagiri K, Suzuki T, Muto H, Sakai M, Matsuda A (2008) Coll Surf A Physicochem Eng Aspects 321:233–237

    Article  Google Scholar 

  63. Yang SH, Kang K, Choi IS (2008) Chem Asian J 3:2097–2104

    Article  Google Scholar 

  64. Masuda K, Morita S, Ohkita H, Benten H, Ito S (2011) Thin Solid Films 519:2493–2498

    Article  Google Scholar 

  65. Chinthamanipeta PS, Lou Q, Shipp DA (2011) ACS Nano 5:450–456

    Article  Google Scholar 

  66. Wang ZY, Ergang NS, Al-Daous MA, Stein A (2005) Chem Mater 17:6805–6813

    Article  Google Scholar 

  67. Chung CJ, Jean JH (2008) J Amer Ceram Soc 9:3074–3077

    Article  Google Scholar 

  68. Yu AM, Lu GQM, Drennan J, Gentle IR (2007) Adv Func Mater 17:2600–2605

    Article  Google Scholar 

  69. Haase NR, Shian S, Sandhage KH, Kröger N (2011) Adv Func Mater 21:4243–4251

    Google Scholar 

  70. Jiang YJ, Sun QY, Jiang ZG, Zhang L, Li J, Li L, Sun XH (2009) Mater Sci Eng, C 29:328–334

    Article  Google Scholar 

  71. Hanprasopwattana A, Rieker T, Sault AG, Datye AK (1997) Catal Lett 45:165–175

    Article  Google Scholar 

  72. Jeffryes C, Gutu T, Jiao J, Rorrer GL (2008) ACS Nano 2:2103–2112

    Article  Google Scholar 

  73. Fang YN, Wu QZ, Dickerson MB, Cai Y, Shian S, Berrigan JD, Poulsen N, Kröger N, Sandhage KH (2009) Chem Mater 21:5704–5710

    Article  Google Scholar 

  74. Ball V, Daheron L, Arnoult C, Toniazzo V, Ruch D (2011) Langmuir 27:1859–1866

    Article  Google Scholar 

  75. Zhang H, Hou R, Lu ZL, Duan X (2009) MRS Bull 44:2000–2008

    Article  Google Scholar 

  76. Lee SW, Drwiega J, Wu CY, Mazyck D, Sigmund WM (2004) Chem Mater 16:1160–1164

    Article  Google Scholar 

  77. Lee SW, Sigmund WM (2003) Chem Commun 780–781

  78. Mayya KS, Gittins DI, Caruso F (2001) Chem Mater 13:3833–3836

    Article  Google Scholar 

  79. Horvath A, Beck A, Sarkany A, Stefler G, Varga Z, Geszti O, Toth L, Guczi L (2006) J Phys Chem B 110:15417–15425

    Article  Google Scholar 

  80. Fang YN, Poulsen N, Dickerson MB, Cai Y, Jones SE, Naik RR, Kröger N, Sandhage KH (2008) J Mater Chem 18:3871–3875

    Article  Google Scholar 

  81. Diaz-Guemes MI, Gonzalez Carreno T, Serna CJ (1988) J Mater Sci Lett 7:671–672

    Article  Google Scholar 

  82. Ahmad G, Dickerson MB, Cai Y, Jones SE, Ernst EM, Vernon JP, Haluska MS, Fang YN, Wang JD, Subramanyam G, Naik RR, Sandhage KH (2008) J Amer Chem Soc 130:4–5

    Article  Google Scholar 

  83. Dang F, Mimura K, Kato K, Imai H, Wada S, Hanedad H, Kuwabara M (2012) Nanoscale 4:1344–1349

    Article  Google Scholar 

  84. Nakano H, Nakamura H (2006) J Amer Ceram Soc 89:1455–1457

    Article  Google Scholar 

  85. Ortel E, Sokolov S, Zielke C, Lauermann I, Selve S, Weh K, Paul B, Polte J, Kraehnert R (2012) Chem Mater 24:3828–3838

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim G. Kessler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessler, V.G. Aqueous route to TiO2-based nanomaterials using pH-neutral carboxylate precursors. J Sol-Gel Sci Technol 68, 464–470 (2013). https://doi.org/10.1007/s10971-013-2983-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-2983-z

Keywords

Navigation