Skip to main content
Log in

Modified crystal structure, dielectric properties, and magnetic phase transition temperature of Ca doped BiFeO3 ceramic

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This paper deals with the preparation of multiferroic Bi1−x Ca x FeO3(x = 0–0.2) ceramics with the sol–gel method and a study on the influence of Ca2+ doping on the structure, dielectric, and ferromagnetic properties of BiFeO3 ceramics. The result shows that the XRD analysis reveals a phase transition in Ca-doped BiFeO3 from rhombohedral to orthorhombic when x is greater than 0.1. The dielectric constant (ε r) of Bi0.9Ca0.1FeO3 measured at 1 kHz is about seven times greater than that of BiFeO3, and Bi0.8Ca0.2FeO3 is less than one-tenth of BiFeO3. It might be understood in terms of the dipole polarization, oxygen vacancy and lattice phase transition. Magnetic measurements show that the M-H of Bi1 x Ca x FeO3 samples exhibit unsaturated and symmetric magnetic hysteresis loops with the increase of Ca2+, indicating the weakly ferromagnetic behavior. It indicates that there is coexistence of Fe2+ and Fe3+ in Bi1 x Ca x FeO3 samples according to the XPS spectrum. The ratio of Fe2+/Fe3+ increases with doping Ca2+ content and the magnetic properties of BiFeO3 are enhanced. It is evident that the ferromagnetic phase transition of BiFeO3 samples occurs at 878 K by measuring the M–T and DSC curves. The T N of BiFeO3 will be reduced from 644 to 638 K and the T M does not change slightly at 878 K with increasing Ca2+ content. T N and T M of Bi1 x Ca x FeO3 change depends mainly on the magnetic structure of relative stability and Fe–O–Fe super-exchange strength.

Graphical abstract

  • The grains of BiFeO3 sample appear cube shaped, while more irregular grains of Bi1 x Ca x FeO3 sample are formed with doping Ca2+ from Fig. 2.

  • M-H of BiFeO3 exhibit saturated and symmetric magnetic hysteresis loops at room temperature with doping Ca2+, indicating that Ca2+ doping can improve the ferromagnetic properties of BiFeO3.

  • It is evident that the ferromagnetic phase transition of Bi1- x Ca x FeO3 samples occurs at 878K by measuring the M-T and DSC curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463

    Article  Google Scholar 

  2. Ahadi K, Nemati A, Mahdavi SM (2012) Conductor–insulator transition and electronic structure of Ca-doped BiFeO3 films. Mater Lett 83:124–126

    Article  Google Scholar 

  3. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric material. Nature 442:759–765

    Article  Google Scholar 

  4. Dong GH, Tan GQ, Luo YY, Liu WL, Xia A, Ren HJ (2014) A comparative investigation on structure and multiferroic properties of bismuth ferrite thin films by multielement co-doping. Mater Res Bull 60:596

    Article  Google Scholar 

  5. Song GL, Song YC, Su J, Song XH, Zhang N, Wang TX, Chang FG (2017) Crystal structure refinement, ferroelectric and ferromagnetic properties of Ho3+ modified BiFeO3 multiferroic material. J Alloy Compd 696:503–509

    Article  Google Scholar 

  6. Peng H, Zhi LH, Wang CY, Li ZJ, Jing J, Song B (2017) Mutual promotion effect of Pr and Mg co-substitution on structure and multiferroic properties of BiFeO3 ceramic. Ceram Int 43:262–267

    Article  Google Scholar 

  7. Gao N, Quan CY, Ma YH, Han YM, Wu ZL, Mao WW, Zhang J, Yang JP, Li XA, Huang W (2016) Experimental and first principles investigation of the multiferroics BiFeO3 and Bi0.9Ca0.1FeO3: structure, electronic, optical and magnetic properties. Phys B 481:45–52

    Article  Google Scholar 

  8. Rubia D, Marlasc FGR, Bonvilled P, Levy P (2012) Magnetism and electrode dependant resistive switching in Ca-doped ceramic bismuth ferrite. Mater Sci Eng B 177:471–475

    Article  Google Scholar 

  9. Chen SY, Wang LY, Xuan HC, Zheng YX, Wang DH, Wu J, Du YW, Huang ZG (2010) Multiferroic properties and converse magnetoelectric effect in Bi1−xCaxFeO3 ceramics. J Alloy Compd 506:537–540

    Article  Google Scholar 

  10. Yang CH, Seidel J, Kim SY, Rossen PB, He Q, Maksymovych P, Balke N, Kalinin SV, Baddorf AP, Basu SR, Scullin ML, Ramesh R (2009) Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nature 8:485

    Article  Google Scholar 

  11. Kozakov AT, Kochur AG, Torgashev VI, Googlev KA, Kubrin SP, Trotsenko VG, Bush AA, Nikolskii AV (2016) Bi1-xCaxFeO3-d (0 ≤ x ≤ 1) ceramics: Crystal structure, phase and elemental composition, and chemical bonding from X-ray diffraction, Raman scattering, and X-ray photoelectron spectra. J Alloy Compd 664:392–405

    Article  Google Scholar 

  12. Mocherla Pavana SV, Gautam S, Chae KH, Rao RMS, Sudakar C (2015) Wide-range tunable bandgap in Bi1 x Ca x Fe1 y Ti y O3 δ nanoparticles via oxygen vacancy induced structural modulations at room temperature. Mater Res Express 2(9):095012

    Article  Google Scholar 

  13. Tirupathi P, Chandra A (2013) Stabilization of dielectric anomaly near the magnetic phase transition in Ca2+ doped BiFeO3 multifunctional ceramics. J Alloy Compd 564:151–157

    Article  Google Scholar 

  14. Puli VS, Pradhan DK, Katiyar RK, Coondoo I, Panwar N, Misra P, Chrisey DB, Scott JF, Katiyar RS (2014) Photovoltaic effect in transition metal modified polycrystalline BiFeO3 thin films. J Phys D Appl Phys 47:075502

    Article  Google Scholar 

  15. Lebeugle D, Colson D, Forget A, Viret M, Bonville P, Marucco JF, Fusil S (2007) Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals[J]. Phys Rev B 76:024116

    Article  Google Scholar 

  16. Uniyal P, Yadav KL (2008) Study of dielectric, magnetic and ferroelectric properties in Bi1−xGdxFeO3. Mater Lett 62:2858–2861. http://www.doc88.com/p-3847774876088.html

    Article  Google Scholar 

  17. Song GJ, Ma GJ, Su J, Wang TX, Yang HG, Chang FG (2014) Effect of Ho3+ doping on the electric, dielectric, ferromagnetic properties and TC of BiFeO3.ceramics. Ceram Int 40:3579–3587

    Article  Google Scholar 

  18. Cost LV, Roch LS, Cortés JA, Ramirez MA, Longo E, Simõs AZ (2015) Enhancement of ferromagnetic and ferroelectric properties in calcium doped BiFeO3 by chemical synthesis. Ceram Int 41:9265–9275

    Article  Google Scholar 

  19. Khomachenko VA, Shvartsman VV, Borisov P, Kleemann W, Kiselev DA, Bdikin IK, Vieira JM, Kholkin AL (2009) Effect of Gd substitution on the crystal structure and multiferroic properties of BiFeO3. Acta Mater 57:5137–5145

    Article  Google Scholar 

  20. Zhang N, Su J, Liu ZY, Fu ZM, Wang XW, Song GL, Chang FG (2014) High temperature magnetic-behavior of multiferroics Bi1-xCaxFeO3. J Appl Phys 115:133912

    Article  Google Scholar 

  21. Yang KG, Zhang YL, Yang SH, Wang B (2010) Structural, electrical, and magnetic properties of multiferroic Bi1-xLaxFe1-yCoyO3 thin films. J Appl Phys 107:124109–124114. http://aip.scitation.org/doi/full/10.1063/1.3437232

    Article  Google Scholar 

  22. Kianinia M, Ahadi K, Nemati A (2011) Investigation of dark and light conductivities in calcium doped bismuth ferrite thin films. Mater Lett 65:3086–3088

    Article  Google Scholar 

  23. Chu SJ, Zhang M, Deng HL, Wang ZH, Wang Y, Pan YH, Yan H (2016) Investigation of doping effect on electrical leakage behavior of BiFeO3 ceramics. J Alloy Compd 689:475–480

    Article  Google Scholar 

  24. Wu XH, Yao L, Yang SH, Zhang YL (2017) Enhanced ferroelectricity and band gap engineering of (1-x)BiFeO3-xSrTiO3thin films. J Sol-Gel Sci Tech 83(3):653–659

    Article  Google Scholar 

  25. Puli VS, Pradhan DK, Gollapudi S, Coondoo I, Panwar N, Adireddy S, Chrisey DB, Katiyar RS (2014) Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO3 thin films. J Magn Magn Mater 369:9–13

    Article  Google Scholar 

  26. Agarwal A, Aghamkar P, Singh V, Sing O, Kumar A (2017) Structural transitions and multiferrocity in Ba and Co substituted nanosized bismuth ferrite. J Alloy Compd 697:333–340

    Article  Google Scholar 

  27. Liu WL, Tan GQ, Ren HJ, Xia A (2015) Multiferroic BiFe1-xTMxO3/NiFe2O4 (TM=Mn, Cr) thin films: structural, electrical and magnetic properties. J Alloy Compd 647:351–356

    Article  Google Scholar 

  28. Song GL, Zhang HX, Wang TX, Yang HG, Chang FG (2012) Effect of Sm, Co co-doping on the dielectric and magnetoelectric properties of BiFeO3 polycrystalline ceramics. J Magn Magn Mat 324:2121

    Article  Google Scholar 

  29. Lazenka VV, Lorenz M, Modarresi H, Brachwitz K, Schwinkendorf P, Bontgen T, Vanacken J, Ziese M, Grundmann M, Moshchalkov VV (2013) Effect of rare-earth ion doping on the multiferroic properties of BiFeO3 thin films grown epitaxially on SrTiO3(1 0 0). J Phys D: Appl Phys 46:175006–175009

    Article  Google Scholar 

  30. Yang C, Liu CZ, Wang CM, Zhang WG, Jiang JS (2012) Magnetic and dielectric properties of alkaline earth Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles. J Magn Magn Mat 324:1483

    Article  Google Scholar 

  31. Sharma P, Verma V (2015) Structural, magnetic and electrical properties of La and Mn co-substituted BFO samples prepared by the sol–gel technique. J Magn Magn Mat 374:18

    Article  Google Scholar 

  32. Chybczynska K, Blaszyk M, Hilczer B, Lucinski T, Matczak M, Andrzejewski B (2017) PEG-controlled thickness of BiFeO3 crystallites in microwave hydrothermal synthesis. Mater Res Bull 86:178–185

  33. Xue X, Tan GQ, Liu WL, Hao HF, Ren HJ (2015) Structural, electrical, and magnetic properties of multiferroic Bi1-xGdxFe0.97Co0.03O3 thin films. J Alloy Compd 622:477–482

    Article  Google Scholar 

  34. Benemanskay GV, Dementev PA, Lapushkin MN, Timoshnev SN, Senkovskiyc B (2017) Soft x-ray photoemission spectroscopy of the Ba atomic layer deposition on the ceramic multiferroic BiFeO3. Appl Surf Sci 400:172–175

    Article  Google Scholar 

  35. Song GL, Su J, Ma GJ, Wang TX, Yang HG, Chang FG (2014) Effects of trivalent gadolinium and cobalt co-substitution on the crystal structure, electronic transport, and ferromagnetic properties of bismuth ferrite[J]. Mater Sci Semicon Proc 27:899–908

    Article  Google Scholar 

  36. Han YL, Liu WF, Xu XL, Guo MC, Zhang XN, Wu P, Rao GH, Wang SY (2017) Room-temperature multiferroic and optical properties in Ba and Rb codoped BiFeO3 nanoparticles. J Alloy Compd 695:2374–2380

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Project no: 11504093, U1304518); Basic and Advanced Technology Research Projects in Henan Province, China (Project no: 162300410086); Key research projects of higher education in Henan province (18A140022); Henan Normal University doctorate to start the project funding (qd16173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui lin Song.

Ethics declarations

Conflict of interest

The above projects are all supported by the research of different characteristics of multiferroic material BFO, among which the key project of higher education is the key project of Henan Provincial Department of Education. The PhD Start-up Fund is a project funded by the university to support PhD personnel in scientific research. There is no contradiction between the projects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, G.l., Su, J., Yang, H. et al. Modified crystal structure, dielectric properties, and magnetic phase transition temperature of Ca doped BiFeO3 ceramic. J Sol-Gel Sci Technol 85, 421–430 (2018). https://doi.org/10.1007/s10971-017-4541-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4541-6

Keywords

Navigation