Skip to main content
Log in

Inkjet printing of functional oxide nanostructures from solution-based inks

  • Invited Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The inkjet printing of functional oxide nanostructures from solutions provides many advantages when compared to conventionally used top-down patterning methods. It does not require masks and—as the material is deposited only where and when needed—any material-removal steps are not needed. This contributes to reduced waste, cost, and time required to fabricate the device. Despite its apparent simplicity, the inkjet printing process offers many challenges, including the ink chemistry, ink-substrate interaction, and drying; these are discussed in the present review. The ink should have suitable values of viscosity, surface tension, density, and vapor pressure to fulfil the requirements for stable drop formation and pattern formation. The substrate properties are discussed from the points of view of wetting and stability of the printed patterns. Drying of wet deposits without build-up of the material at the edges via the coffee-stain effect is a critical step and strategies to overcome it are discussed. Finally, the potential of inkjet printing technology in many different applications is discussed.

In the inkjet printing of functional oxide nanostructures from solutions the material is deposited only where and when needed which contributes to reduced waste, cost and time required to fabricate the device. Despite its apparent simplicity, the inkjet printing process offers many challenges, including the ink chemistry, ink-substrate interaction, and drying; these are discussed in the review.

Highlights

  • Inkjet printing enables integration of different materials into components without additional steps.

  • Functional oxide nanostructures are patterned from solution-based inks.

  • Control over wetting and drying is achieved through understanding ink-substrate interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hudd A (2009) Inkjet printing technologies. In: Magdassi S (ed) The chemistry of inkjet inks. World Scientific, Singapore, pp 3–18

  2. Morita N, Khalate AA, Buul AM, Wijshoff H (2015) Inkjet printheads. In: Hoath SD (ed) Fundamentals of inkjet printing. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 57–92

    Chapter  Google Scholar 

  3. Dimatix Fujifilm. Jettable Fluid Formulation Guidelines. https://www.fujifilmusa.com/shared/bin/Dimatix-Materials-Printer-Jettable-Fluid-Formulation-Guidelines.pdf. Accessed 14 Jul 2016

  4. Driessen T, Jeurissen R (2015) Drop formation in inkjet printing. In: Hoath SD (ed) Fundamentals of inkjet printing. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 93–116

    Chapter  Google Scholar 

  5. Magdassi S (2009) Ink requirements and formulations guidelines. In: Magdassi S (ed) The chemistry of inkjet inks. World Scientific, Singapore, pp 19–41

  6. Reis N, Derby B (2000) Ink jet deposition of ceramic suspensions: modeling and experiments of droplet formation. MRS Proc 625:117–122. https://doi.org/10.1557/PROC-625-117

    Article  CAS  Google Scholar 

  7. Stringer J, Derby B (2010) Formation and stability of lines produced by inkjet printing. Langmuir 26:10365–10372. https://doi.org/10.1021/la101296e

    Article  CAS  Google Scholar 

  8. Duineveld PC (2003) The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate. J Fluid Mech 477. https://doi.org/10.1017/S0022112002003117

  9. Tekin E, de Gans B-J, Schubert US (2004) Ink-jet printing of polymers from single dots to thin film libraries. J Mater Chem 14:2627–2632. https://doi.org/10.1039/b407478e

    Article  CAS  Google Scholar 

  10. Sun J, Bao B, He M et al. (2015) Recent advances in controlling the depositing morphologies of inkjet droplets. ACS Appl Mater Interfaces 7:28086–28099. https://doi.org/10.1021/acsami.5b07006

    Article  CAS  Google Scholar 

  11. Deegan RD, Bakajin O, Dupont TF et al. (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829. https://doi.org/10.1038/39827

    Article  CAS  Google Scholar 

  12. Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 40:395–414. https://doi.org/10.1146/annurev-matsci-070909-104502

    Article  CAS  Google Scholar 

  13. Derby B (2015) Additive manufacture of ceramics components by inkjet printing. Engineering 1:113–123. https://doi.org/10.15302/J-ENG-2015014

    Article  CAS  Google Scholar 

  14. Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Inkjet printing-process and its applications. Adv Mater 22:673–685. https://doi.org/10.1002/adma.200901141

    Article  CAS  Google Scholar 

  15. Das RN, Lin HT, Lauffer JM, Markovich VR (2011) Printable electronics: towards materials development and device fabrication. Circuit World 37:38–45. https://doi.org/10.1108/03056121111101278

    Article  CAS  Google Scholar 

  16. de Gans B-J, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16:203–213. https://doi.org/10.1002/adma.200300385

    Article  CAS  Google Scholar 

  17. Fromm JE (1984) Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J Res Dev 28:322–333. https://doi.org/10.1147/rd.283.0322

    Article  Google Scholar 

  18. Kuscer D, Stavber G, Trefalt G, Kosec M (2012) Formulation of an aqueous titania suspension and its patterning with ink-jet printing technology. J Am Ceram Soc 95:487–493. https://doi.org/10.1111/j.1551-2916.2011.04876.x

    Article  CAS  Google Scholar 

  19. Matavž A, Malič B, Bobnar V (2017) Inkjet printing of metal-oxide-based transparent thin-film capacitors. J Appl Phys 122:214102. https://doi.org/10.1063/1.5000432

    Article  CAS  Google Scholar 

  20. Jang D, Kim D, Moon J (2009) Influence of fluid physical properties on ink-jet printability. Langmuir 25:2629–2635. https://doi.org/10.1021/la900059m

    Article  CAS  Google Scholar 

  21. Tellier J, Malic B, Kuscer D et al. (2011) Ink-jet printing of In2O3/ZnO two-dimensional structures from solution. J Am Ceram Soc 94:2834–2840. https://doi.org/10.1111/j.1551-2916.2011.04425.x

    Article  CAS  Google Scholar 

  22. Matavž A, Frunză RC, Drnovšek A et al. (2016) Inkjet printing of uniform dielectric oxide structures from sol–gel inks by adjusting the solvent composition. J Mater Chem C 4:5634–5641. https://doi.org/10.1039/C6TC01090C

    Article  CAS  Google Scholar 

  23. Vernieuwe K, Feys J, Cuypers D, De Buysser K (2016) Ink-jet printing of aqueous inks for single-layer deposition of Al-doped ZnO thin films. J Am Ceram Soc 99:1353–1359. https://doi.org/10.1111/jace.14059

    Article  CAS  Google Scholar 

  24. Schwartz RW, Schneller T, Waser R (2004) Chemical solution deposition of electronic oxide films. Comptes Rendus Chim 7:433–461. https://doi.org/10.1016/j.crci.2004.01.007

    Article  CAS  Google Scholar 

  25. Schneller T, Waser R, Kosec M, Payne D (eds) (2013) Chemical solution deposition of functional oxide thin films. Springer Vienna, Vienna

    Google Scholar 

  26. Bassiri-Gharb N, Bastani Y, Bernal A (2014) Chemical solution growth of ferroelectric oxide thin films and nanostructures. Chem Soc Rev 43:2125–2140. https://doi.org/10.1039/C3CS60250H

    Article  CAS  Google Scholar 

  27. Schneller T (2013) Simple alkoxide based precursor systems. In: Schneller T, Waser R, Kosec M, Payne D (eds) Chemical solution deposition of functional oxide thin films. Springer Vienna, Vienna, pp 3–28

    Chapter  Google Scholar 

  28. Schneller T, Griesche D (2013) Carboxylate based precursor systems. In: Schneller T, Waser R, Kosec M, Payne D (eds) Chemical solution deposition of functional oxide thin films. Springer Vienna, Vienna, pp 29–49

    Chapter  Google Scholar 

  29. Malič B, Glinšek S, Schneller T, Kosec M (2013) Mixed metallo-organic precursor systems. In: Schneller T, Waser R, Kosec M, Payne D (eds) Chemical solution deposition of functional oxide thin films. Springer Vienna, Vienna, pp 51–69

    Chapter  Google Scholar 

  30. Kim SJ, Kim GH, Kim DL et al. (2010) InGaZnO thin-film transistors with YHfZnO gate insulator by solution process. Phys Status Solidi Appl Mater Sci 207:1668–1671. https://doi.org/10.1002/pssa.200983724

    Article  CAS  Google Scholar 

  31. Street RA, Ng TN, Lujan RA et al. (2014) Sol − gel solution-deposited InGaZnO thin film transistors. https://doi.org/10.1021/am500126b

  32. Tu Y-L, Calzada ML, Phillips NJ, Milne SJ (1996) Synthesis and electrical characterization of thin films of PT and PZT made from a Diol-based sol-gel route. J Am Ceram Soc 79:441–448. https://doi.org/10.1111/j.1151-2916.1996.tb08142.x

    Article  CAS  Google Scholar 

  33. Birnie DP (2013) Spin coating: Art and science. In: Schneller T, Waser R, Kosec M, Payne D (eds) Chemical solution deposition of functional oxide thin films. Springer Vienna, Vienna, pp 263–274

    Chapter  Google Scholar 

  34. Schwartz RW, Narayanan M (2013) Thermodynamics and heating processes. In: Schneller T, Waser R, Kosec M, Payne D (eds) Chemical solution deposition of functional oxide thin films. Springer Vienna, Vienna, pp 343–382

    Chapter  Google Scholar 

  35. Fortunato E, Barquinha P, Martins R (2012) Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater 24:2945–86. https://doi.org/10.1002/adma.201103228

    Article  CAS  Google Scholar 

  36. Martin GD, Hoath SD, Hutchings IM (2008) Inkjet printing - the physics of manipulating liquid jets and drops. J Phys Conf Ser 105:12001. https://doi.org/10.1088/1742-6596/105/1/012001

    Article  CAS  Google Scholar 

  37. Schiaffino S, Sonin AA (1997) Molten droplet deposition and solidification at low Weber numbers. Phys Fluids 9:3172–3187. https://doi.org/10.1063/1.869434

    Article  CAS  Google Scholar 

  38. Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing…. Annu Rev Fluid Mech 38:159–192. https://doi.org/10.1146/annurev.fluid.38.050304.092144

    Article  Google Scholar 

  39. Jung S, Hwang HJ, Hong SH (2016) Drops on substrates. In: Hoath SD (ed) Fundamentals of inkjet printing: The science of inkjet and droplets. Wiley-VCH, Weinheim, pp 199–218

  40. Zisman WA (1964) Relation of the equilibrium contact angle to liquid and solid constitution. In: Fowkes FM (ed) Advances in Chemistry, Vol. 43. American Chemical Society, Washington DC, pp 1–51

  41. Fowkes FM (1964) Attractive forces at interfaces. Ind Eng Chem 56:40–52. https://doi.org/10.1021/ie50660a008

    Article  CAS  Google Scholar 

  42. Wu S (2007) Calculation of interfacial tension in polymer systems. J Polym Sci Part C Polym Symp 34:19–30. https://doi.org/10.1002/polc.5070340105

    Article  CAS  Google Scholar 

  43. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747. https://doi.org/10.1002/app.1969.070130815

    Article  CAS  Google Scholar 

  44. Rabel W (1971) Einige Aspekte der Benetzungstheorie und ihre Anwendung auf die Untersuchung und Veränderung der Oberflächeneigenschaften von Polymeren. Farbe und Lack 77:997–1005

    CAS  Google Scholar 

  45. Kaelble DH (1970) Dispersion-polar surface tension properties of organic solids. J Adhes 2:66–81. https://doi.org/10.1080/0021846708544582

    Article  CAS  Google Scholar 

  46. Van Oss CJ, Chaudhury MK, Good RJ (1988) Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem Rev 88:927–941. https://doi.org/10.1021/cr00088a006

    Article  Google Scholar 

  47. Li D, Neumann AW (1992) Equation of state for interfacial tensions of solid-liquid systems. Adv Colloid Interface Sci 39:299–345. https://doi.org/10.1016/0001-8686(92)80064-5

    Article  CAS  Google Scholar 

  48. Marmur A, Valal D (2010) Correlating interfacial tensions with surface tensions: a Gibbsian approach. Langmuir 26:5568–5575. https://doi.org/10.1021/la9038478

    Article  CAS  Google Scholar 

  49. Matavž A, Bobnar V, Malic B (2017) Tailoring ink-substrate interactions via thin polymeric layers for high-resolution printing. Langmuir 33(43):11893–11900. https://doi.org/10.1021/acs.langmuir.7b02181

    Article  CAS  Google Scholar 

  50. Ramé E (1997) The interpretation of dynamic contact angles measured by the Wilhelmy Plate Method. J Colloid Interface Sci 185:245–251. https://doi.org/10.1006/jcis.1996.4589

    Article  Google Scholar 

  51. Pierce E, Carmona FJ, Amirfazli A (2008) Understanding of sliding and contact angle results in tilted plate experiments. Colloids Surf A Physicochem Eng Asp 323:73–82. https://doi.org/10.1016/j.colsurfa.2007.09.032

    Article  CAS  Google Scholar 

  52. Krishnan A, Liu Y-H, Cha P et al. (2005) An evaluation of methods for contact angle measurement. Colloids Surf B Biointerfaces 43:95–98. https://doi.org/10.1016/j.colsurfb.2005.04.003

    Article  CAS  Google Scholar 

  53. De Gennes PG (1985) Wetting: Statics and dynamics. Rev Mod Phys 57:827–863. https://doi.org/10.1103/RevModPhys.57.827

    Article  Google Scholar 

  54. Tadmor R (2004) Line energy and the relation between advancing, receding, and young contact angles. Langmuir 20:7659–7664. https://doi.org/10.1021/la049410h

    Article  CAS  Google Scholar 

  55. Tadmor R (2013) Misconceptions in wetting phenomena. Langmuir 29:15474–15475. https://doi.org/10.1021/la403578q

    Article  CAS  Google Scholar 

  56. Rodríguez-Valverde MA, Montes Ruiz-Cabello FJ, Gea Jódar PM et al. (2010) A new model to estimate the Young contact angle from contact angle hysteresis measurements. Colloids Surf A Physicochem Eng Asp 365:21–27. https://doi.org/10.1016/j.colsurfa.2010.01.055

    Article  CAS  Google Scholar 

  57. Marmur A (2006) Soft contact: measurement and interpretation of contact angles. Soft Matter 2:12–17. https://doi.org/10.1039/B514811C

    Article  CAS  Google Scholar 

  58. Giacomello A, Schimmele L, Dietrich S (2016) Wetting hysteresis induced by nanodefects. Proc Natl Acad Sci 113:262–271. https://doi.org/10.1073/pnas.1513942113

    Article  CAS  Google Scholar 

  59. Diddens C, Kuerten JGM, van der Geld CWM, Wijshoff HMA (2017) Modeling the evaporation of sessile multi-component droplets. J Colloid Interface Sci 487:426–436. https://doi.org/10.1016/j.jcis.2016.10.030

    Article  CAS  Google Scholar 

  60. Oh JH, Lim SY (2010) Precise size control of inkjet-printed droplets on a flexible polymer substrate using plasma surface treatment. J Micromech Microeng 20:15030. https://doi.org/10.1088/0960-1317/20/1/015030

    Article  CAS  Google Scholar 

  61. Jang J, Kang H, Chakravarthula HCN, Subramanian V (2015) Fully inkjet-printed transparent oxide thin film transistors using a fugitive wettability switch. Adv Electron Mater 1:1500086. https://doi.org/10.1002/aelm.201500086

    Article  CAS  Google Scholar 

  62. Sakai Y, Futakuchi T, Iijima T, Adachi M (2006) Preparation of (Ba,Sr)TiO3 thick film on ZrO2 substrates by Inkjet printing. Jpn J Appl Phys, Part 1 Regul Pap Short Notes Rev Pap 45:846–849. https://doi.org/10.1143/JJAP.45.846

    Article  CAS  Google Scholar 

  63. Wilbur JL, Kumar A, Biebuyck HA et al. (1996) Microcontact printing of self-assembled monolayers: applications in microfabrication. Nanotechnology 7:452–457. https://doi.org/10.1088/0957-4484/7/4/028

    Article  CAS  Google Scholar 

  64. Nguyen PQM, Yeo LP, Lok BK, Lam YC (2014) Patterned surface with controllable wettability for inkjet printing of flexible printed electronics. ACS Appl Mater Interfaces 6:4011–4016. https://doi.org/10.1021/am4054546

    Article  CAS  Google Scholar 

  65. Wang JZ, Zheng ZH, Li HW et al. (2004) Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat Mater 3:171–176. https://doi.org/10.1038/nmat1073

    Article  CAS  Google Scholar 

  66. Janssen D, De Palma R, Verlaak S et al. (2006) Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide. Thin Solid Films 515:1433–1438. https://doi.org/10.1016/j.tsf.2006.04.006

    Article  CAS  Google Scholar 

  67. Sele CW, von Werne T, Friend RH, Sirringhaus H (2005) Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution. Adv Mater 17:997–1001. https://doi.org/10.1002/adma.200401285

    Article  CAS  Google Scholar 

  68. Davis SH (1980) Moving contact lines and rivulet instabilities. Part 1. Static rivulet J Fluid Mech 98:225. https://doi.org/10.1017/S0022112080000110

    Article  Google Scholar 

  69. Schiaffino S, Sonin A (1997) Formation and stability of liquid and molten beads on a solid surface. J Fluid Mech 343:95–110. https://doi.org/10.1017/S0022112097005831

    Article  Google Scholar 

  70. Soltman D, Subramanian V (2008) Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24:2224–2231. https://doi.org/10.1021/la7026847

    Article  CAS  Google Scholar 

  71. Stringer J, Derby B (2009) Limits to feature size and resolution in ink jet printing. J Eur Ceram Soc 29:913–918. https://doi.org/10.1016/j.jeurceramsoc.2008.07.016

    Article  CAS  Google Scholar 

  72. Hsiao W-K, Martin GD, Hutchings IM (2014) Printing Stable Liquid Tracks on a Surface with Finite Receding Contact Angle. Langmuir 30:12447–12455. https://doi.org/10.1021/la502490p

    Article  CAS  Google Scholar 

  73. Kang H, Soltman D, Subramanian V (2010) Hydrostatic optimization of inkjet-printed films. Langmuir 26:11568–11573. https://doi.org/10.1021/la100822s

    Article  CAS  Google Scholar 

  74. Soltman D, Smith B, Morris SJS, Subramanian V (2013) Inkjet printing of precisely defined features using contact-angle hysteresis. J Colloid Interface Sci 400:135–139. https://doi.org/10.1016/j.jcis.2013.03.006

    Article  CAS  Google Scholar 

  75. Deegan R, Bakajin O, Dupont T et al. (2000) Contact line deposits in an evaporating drop. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 62:756–765

    CAS  Google Scholar 

  76. Ko H-Y, Park J, Shin H, Moon J (2004) Rapid self-assembly of monodisperse colloidal spheres in an ink-jet printed droplet. Chem Mater 16:4212–4215. https://doi.org/10.1021/cm035256t

    Article  CAS  Google Scholar 

  77. Deegan R (2000) Pattern formation in drying drops. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 61:475–485

    CAS  Google Scholar 

  78. Harris DJ, Hu H, Conrad JC, Lewis JA (2007) Patterning colloidal films via evaporative lithography. Phys Rev Lett 98:148301. https://doi.org/10.1103/PhysRevLett.98.148301

    Article  CAS  Google Scholar 

  79. van den Berg AMJ, de Laat AWM, Smith PJ et al. (2007) Geometric control of inkjet printed features using a gelating polymer. J Mater Chem 17:677. https://doi.org/10.1039/b612158f

    Article  CAS  Google Scholar 

  80. Talbot EL, Yang L, Berson A, Bain CD (2014) Control of the particle distribution in inkjet printing through an evaporation-driven sol-gel transition. ACS Appl Mater Interfaces 6:9572–9583. https://doi.org/10.1021/am501966n

    Article  CAS  Google Scholar 

  81. Hu H, Larson RG (2006) Marangoni effect reverses coffee-ring depositions. J Phys Chem B 110:7090–7094. https://doi.org/10.1021/jp0609232

    Article  CAS  Google Scholar 

  82. Still T, Yunker PJ, Yodh AG (2012) Surfactant-induced Marangoni Eddies alter the coffee-rings of evaporating colloidal drops. Langmuir 28:4984–4988. https://doi.org/10.1021/la204928m

    Article  CAS  Google Scholar 

  83. Kajiya T, Kobayashi W, Okuzono T, Doi M (2009) Controlling the drying and film formation processes of polymer solution droplets with addition of small amount of surfactants. J Phys Chem B 113:15460–15466. https://doi.org/10.1021/jp9077757

    Article  CAS  Google Scholar 

  84. Park J, Moon J (2006) Control of colloidal particle deposit patterns within Picoliter droplets ejected by ink-jet printing. Langmuir 22:3506–3513. https://doi.org/10.1021/la053450j

    Article  CAS  Google Scholar 

  85. Kim D, Jeong S, Park BK, Moon J (2006) Direct writing of silver conductive patterns: improvement of film morphology and conductance by controlling solvent compositions. Appl Phys Lett 89:264101. https://doi.org/10.1063/1.2424671

    Article  CAS  Google Scholar 

  86. Babatunde PO, Hong WJ, Nakaso K, Fukai J (2013) Effect of solute- and solvent-derived Marangoni flows on the shape of polymer films formed from drying droplets. AIChE J 59:699–702. https://doi.org/10.1002/aic.14031

    Article  CAS  Google Scholar 

  87. Poulard C, Damman P (2007) Control of spreading and drying of a polymer solution from Marangoni flows. Europhys Lett 80:64001. https://doi.org/10.1209/0295-5075/80/64001

    Article  CAS  Google Scholar 

  88. Bathurst SP, Kim SG (2013) Printing of uniform PZT thin films for MEMS applications. CIRP Ann - Manuf Technol 62:227–230. https://doi.org/10.1016/j.cirp.2013.03.113

    Article  Google Scholar 

  89. Kajiya T, Kaneko D, Doi M (2008) Dynamical visualization of “coffee stain phenomenon” in droplets of polymer solution via fluorescent microscopy. Langmuir 24:12369–12374. https://doi.org/10.1021/la8017858

    Article  CAS  Google Scholar 

  90. Fukai J, Ishizuka H, Sakai Y et al. (2006) Effects of droplet size and solute concentration on drying process of polymer solution droplets deposited on homogeneous surfaces. Int J Heat Mass Transf 49:3561–3567. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.049

    Article  CAS  Google Scholar 

  91. Li Y, Lan L, Sun S et al. (2017) All inkjet-printed metal-oxide thin-film transistor array with good stability and uniformity using surface-energy patterns. ACS Appl Mater Interfaces 9:8194–8200. https://doi.org/10.1021/acsami.7b00435

    Article  CAS  Google Scholar 

  92. Kim D, Jeong Y, Song K et al. (2009) Inkjet-printed zinc tin oxide thin-film transistor. Langmuir 25:11149–11154. https://doi.org/10.1021/la901436p

    Article  CAS  Google Scholar 

  93. Robin M, Kuai W, Amela-Cortes M et al. (2015) Epoxy based ink as versatile material for inkjet-printed devices. ACS Appl Mater Interfaces 7:21975–21984. https://doi.org/10.1021/acsami.5b06678

    Article  CAS  Google Scholar 

  94. Kajiya T, Monteux C, Narita T et al. (2009) Contact-line recession leaving a macroscopic polymer film in the drying droplets of water−poly(N, N -dimethylacrylamide) (PDMA) solution. Langmuir 25:6934–6939. https://doi.org/10.1021/la900216k

    Article  CAS  Google Scholar 

  95. Fukuda K, Sekine T, Kumaki D, Tokito S (2013) Profile control of inkjet printed silver electrodes and their application to organic transistors. ACS Appl Mater Interfaces 5:3916–3920. https://doi.org/10.1021/am400632s

    Article  CAS  Google Scholar 

  96. Parsa M, Harmand S, Sefiane K et al. (2015) Effect of substrate temperature on pattern formation of nanoparticles from volatile drops. Langmuir 31:3354–3367. https://doi.org/10.1021/acs.langmuir.5b00362

    Article  CAS  Google Scholar 

  97. Tao R, Ning H, Fang Z et al. (2017) Homogeneous surface profiles of inkjet-printed silver nanoparticle films by regulating their drying microenvironment. J Phys Chem C 121:8992–8998. https://doi.org/10.1021/acs.jpcc.6b12793

    Article  CAS  Google Scholar 

  98. Hu S, Wang Y, Man X, Doi M (2017) Deposition patterns of two neighboring droplets: onsager variational principle studies. Langmuir 33:5965–5972. https://doi.org/10.1021/acs.langmuir.7b01354

    Article  CAS  Google Scholar 

  99. Kobayashi M, Makino M, Okuzono T, Doi M (2010) Interference effects in the drying of polymer droplets on substrate. J Phys Soc Jpn 79:44802. https://doi.org/10.1143/JPSJ.79.044802

    Article  CAS  Google Scholar 

  100. Diddens C, Tan H, Lv P et al. (2017) Evaporating pure, binary and ternary droplets: thermal effects and axial symmetry breaking. J Fluid Mech 823:470–497. https://doi.org/10.1017/jfm.2017.312

    Article  CAS  Google Scholar 

  101. Sáenz PJ, Wray AW, Che Z et al. (2017) Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation. Nat Commun 8:14783. https://doi.org/10.1038/ncomms14783

    Article  CAS  Google Scholar 

  102. Zeumault A, Ma S, Holbery J (2016) Fully inkjet-printed metal-oxide thin-film transistors on plastic. Phys Status Solidi 213:2189–2195. https://doi.org/10.1002/pssa.201600077

    Article  CAS  Google Scholar 

  103. Frunză RC, Kmet B, Jankovec M et al. (2014) Ta2O5 -based high-K dielectric thin films from solution processed at low temperatures. Mater Res Bull 50:323–328. https://doi.org/10.1016/j.materresbull.2013.11.025

    Article  CAS  Google Scholar 

  104. Vescio G, López-Vidrier J, Leghrib R et al. (2016) Flexible inkjet printed high-k HfO2 -based MIM capacitors. J Mater Chem C 4:1804–1812. https://doi.org/10.1039/C5TC03307A

    Article  CAS  Google Scholar 

  105. Tellier J, Kuščer D, Malič B et al. (2010) Transparent, amorphous and organics-free ZnO thin films produced by chemical solution deposition at 150 °C. Thin Solid Films 518:5134–5139. https://doi.org/10.1016/j.tsf.2010.03.010

    Article  CAS  Google Scholar 

  106. Lee JS, Kwack Y-J, Choi W-S (2013) Inkjet-printed In2O3 thin-film transistor below 200 °C. ACS Appl Mater Interfaces 5:11578–11583. https://doi.org/10.1021/am4025774

    Article  CAS  Google Scholar 

  107. Scheideler WJ, Kumar R, Zeumault AR, Subramanian V (2017) Low-temperature-processed printed metal oxide transistors based on pure aqueous inks. Adv Funct Mater 27:1606062. https://doi.org/10.1002/adfm.201606062

    Article  CAS  Google Scholar 

  108. Leppäniemi J, Eiroma K, Majumdar H, Alastalo A (2017) Far-UV annealed inkjet-printed In2O3 semiconductor layers for thin-film transistors on a flexible polyethylene naphthalate substrate. ACS Appl Mater Interfaces 9:8774–8782. https://doi.org/10.1021/acsami.6b14654

    Article  CAS  Google Scholar 

  109. Hoffmann RC, Dilfer S, Schneider JJ (2011) Transparent indium tin oxide as inkjet-printed thin film electrodes for organic field-effect transistors. Phys Status Solidi 208:2920–2925. https://doi.org/10.1002/pssa.201127362

    Article  CAS  Google Scholar 

  110. Song K, Jung Y, Kim Y et al. (2011) Solution-processable tin-doped indium oxide with a versatile patternability for transparent oxide thin film transistors. J Mater Chem 21:14646. https://doi.org/10.1039/c1jm11418b

    Article  CAS  Google Scholar 

  111. Fang M, Aristov A, Rao KV et al. (2013) Particle-free inkjet printing of nanostructured porous indium tin oxide thin films. RSC Adv 3:19501. https://doi.org/10.1039/c3ra40487k

    Article  CAS  Google Scholar 

  112. Hennek JW, Xia Y, Everaerts K et al. (2012) Reduced contact resistance in inkjet printed high-performance amorphous indium gallium zinc oxide transistors. ACS Appl Mater Interfaces 4:1614–1619. https://doi.org/10.1021/am201776p

    Article  CAS  Google Scholar 

  113. Kim GH, Kim HS, Shin HS et al. (2009) Inkjet-printed InGaZnO thin film transistor. Thin Solid Films 517:4007–4010. https://doi.org/10.1016/j.tsf.2009.01.151

    Article  CAS  Google Scholar 

  114. Avis C, Hwang HR, Jang J (2014) Effect of channel layer thickness on the performance of indium–zinc–tin oxide thin film transistors manufactured by inkjet printing. ACS Appl Mater Interfaces 6:10941–10945. https://doi.org/10.1021/am501153w

    Article  CAS  Google Scholar 

  115. Lee D-H, Han S-Y, Herman GS, Chang C (2009) Inkjet printed high-mobility indium zinc tin oxide thin film transistors. J Mater Chem 19:3135. https://doi.org/10.1039/b822893k

    Article  CAS  Google Scholar 

  116. Avis C, Jang J (2011) A high performance inkjet printed zinc tin oxide transparent thin-film transistor manufactured at the maximum process temperature of 300 °C and its stability test. Electrochem Solid-State Lett 14:9–11. https://doi.org/10.1149/1.3516608

    Article  CAS  Google Scholar 

  117. Vernieuwe K, Cuypers D, Kirschhock CEA et al. (2017) Thermal processing of aqueous AZO inks towards functional TCO thin films. J Alloy Compd 690:360–368. https://doi.org/10.1016/j.jallcom.2016.08.120

    Article  CAS  Google Scholar 

  118. Matavž A, Frunza RC, Drnovsek A et al. (2016) Inkjet printing of thin metal-oxide structures from sol-gel precursor inks. In: 2016 Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (ISAF/ECAPD/PFM). IEEE, pp 1–4

  119. Morozova M, Kluson P, Krysa J et al. (2011) Thin TiO2 films prepared by inkjet printing of the reverse micelles sol–gel composition. Sens Actuators B Chem 160:371–378. https://doi.org/10.1016/j.snb.2011.07.063

    Article  CAS  Google Scholar 

  120. Chouiki M, Schoeftner R (2011) Inkjet printing of inorganic sol-gel ink and control of the geometrical characteristics. J Sol-Gel Sci Technol 58:91–95. https://doi.org/10.1007/s10971-010-2360-0

    Article  CAS  Google Scholar 

  121. Machida O, Shimofuku A, Tashiro R et al. (2012) Fabrication of lead zirconate titanate films by inkjet printing. Jpn J Appl Phys 51. https://doi.org/10.1143/JJAP.51.09LA11

  122. Bathurst SP (2012) Ink Jet Printing of PZT Thin Films for MEMS. PhD thesis, Massachusetts Institute of Technology

  123. Kaydanova T, Miedaner A, Perkins JD et al. (2007) Direct-write inkjet printing for fabrication of barium strontium titanate-based tunable circuits. Thin Solid Films 515:3820–3824. https://doi.org/10.1016/j.tsf.2006.10.009

    Article  CAS  Google Scholar 

  124. Pečnik T, Glinšek S, Kmet B, Malič B (2015) Combined effects of thickness, grain size and residual stress on the dielectric properties of Ba0 .5Sr0 .5TiO3 thin films. J Alloy Compd 646:766–772. https://doi.org/10.1016/j.jallcom.2015.06.192

    Article  CAS  Google Scholar 

  125. List FA, Kodenkandath T, Rupich MW (2007) Fabrication of filamentary YBCO coated conductor by inkjet printing. IEEE Trans Appl Supercond 17:3355–3358. https://doi.org/10.1109/TASC.2007.899991

    Article  CAS  Google Scholar 

  126. Feys J, Vermeir P, Lommens P et al. (2012) Ink-jet printing of YBa2Cu3O7 superconducting coatings and patterns from aqueous solutions. J Mater Chem 22:3717–3726. https://doi.org/10.1039/C1JM14899K

    Article  CAS  Google Scholar 

  127. Gadea C, Hanniet Q, Lesch A et al. (2017) Aqueous metal–organic solutions for YSZ thin film inkjet deposition. J Mater Chem C 5:6021–6029. https://doi.org/10.1039/C7TC01879G

    Article  CAS  Google Scholar 

  128. Bacelis-Martínez RD, Oskam G, Rodriguez Gattorno G, Ruiz-Gómez MA (2017) Inkjet printing as high-throughput technique for the fabrication of NiCo2O4 films. Adv Mater Sci Eng 2017:1–9. https://doi.org/10.1155/2017/9647458

    Article  Google Scholar 

  129. Wang C, Tomov RI, Vasant Kumar R, Glowacki BA (2011) Inkjet printing of gadolinium-doped ceria electrolyte on NiO-YSZ substrates for solid oxide fuel cell applications. J Mater Sci 46:6889–6896. https://doi.org/10.1007/s10853-011-5653-y

    Article  CAS  Google Scholar 

  130. Mosiadz M, Tomov RI, Hopkins SC et al. (2010) Inkjet printing of Ce0 .8Gd0.2O2 thin films on Ni-5%W flexible substrates. J Sol-Gel Sci Technol 54:154–164. https://doi.org/10.1007/s10971-010-2170-4

    Article  CAS  Google Scholar 

  131. Singh A, Gupta SK, Garg A (2017) Inkjet printing of NiO films and integration as hole transporting layers in polymer solar cells. Sci Rep 7:1775. https://doi.org/10.1038/s41598-017-01897-9

    Article  CAS  Google Scholar 

  132. Brisse R, Faddoul R, Bourgeteau T et al. (2017) Inkjet printing NiO-based p-type dye-sensitized solar cells. ACS Appl Mater Interfaces 9:2369–2377. https://doi.org/10.1021/acsami.6b12912

    Article  CAS  Google Scholar 

  133. Cheng Z, Xing R, Hou Z et al. (2010) Patterning of light-emitting YVO4:Eu3+ thin films via inkjet printing. J Phys Chem C 114:9883–9888. https://doi.org/10.1021/jp101941y

    Article  CAS  Google Scholar 

  134. Lee D, Wang W, Gutu T et al. (2008) Biogenic silica based Zn2SiO4:Mn2+ and Y2SiO5:Eu3+ phosphor layers patterned by inkjet printing process. J Mater Chem 18:3633. https://doi.org/10.1039/b806812g

    Article  CAS  Google Scholar 

  135. Jiang J, Bao B, Li M et al. (2016) Fabrication of transparent multilayer circuits by inkjet printing. Adv Mater 28:1420–1426. https://doi.org/10.1002/adma.201503682

    Article  CAS  Google Scholar 

  136. Clemens S, Schneller T (2013) Template Controlled Growth. In: Schneller T, Waser R, Kosec M, Payne D (eds) Chemical Solution Deposition of Functional Oxide Thin Films. Springer Vienna, Vienna, pp 517–539

    Chapter  Google Scholar 

  137. Bormashenko E, Eldar B, Chaniel G et al. (2016) Influence of cold radiofrequency air and nitrogen plasmas treatment on wetting of polypropylene by the liquid epoxy resin. Colloids Surf A Physicochem Eng Asp 506:445–449. https://doi.org/10.1016/j.colsurfa.2016.07.028

    Article  CAS  Google Scholar 

  138. Jiang C, Zhong Z, Liu B et al. (2016) Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices. ACS Appl Mater Interfaces 8:26162–26168. https://doi.org/10.1021/acsami.6b08679

    Article  CAS  Google Scholar 

  139. Lide DR (2004) CRC handbook of chemistry and physics, 84th edn. CRC Press, Boca Raton

Download references

Acknowledgements

The authors acknowledge the financial support of the Slovenian Research Agency (P1-0125, P2-0105, PR-06799).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Malič.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matavž, A., Malič, B. Inkjet printing of functional oxide nanostructures from solution-based inks. J Sol-Gel Sci Technol 87, 1–21 (2018). https://doi.org/10.1007/s10971-018-4701-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4701-3

Keywords

Navigation