Skip to main content
Log in

Novel synthetic approach to the preparation of single-phase BixLa1−xMnO3+δ solid solutions

  • Original Paper: Sol–gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, the BixLa1−xMnO3+δ solid solutions (x from 0 to 0.65) were synthesized using sol–gel combustion method with citric acid as a fuel and complexing agent. It was shown that changes in chemical composition of the materials lead to the evolution of crystal structure, morphology, and magnetic properties. The thermal behavior of precursor gel was investigated by thermogravimetric and differential scanning calorimetry (TG-DSC) measurements. X-ray diffraction (XRD) analysis demonstrated that all samples were monophasic. The Rietveld analysis showed that the structure can be indexed by trigonal or cubic unit cell depending on Bi3+ content. Scanning electron microscopy (SEM) was used to evaluate morphological features of the synthesized materials and revealed that Bi3+ ions significantly promote growth of the grains. The sol–gel-derived BixLa1−xMnO3+δ specimens were also characterized by FT-IR spectroscopy and magnetization measurements, which showed a clear correlation between magnetic properties and crystal structure of the materials.

Highlights

  • BixLa1–xMnO3+δ solid solutions (x from 0 to 0.65) were synthesized by the sol–gel combustion method.

  • The suggested synthetic approach does not require addition of external solvent.

  • Structural, morphological and magnetic properties depend on the chemical composition of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dong S, Liu JM, Cheong SW, Ren ZF (2015) Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv Phys 64(5–6):519–626. https://doi.org/10.1080/00018732.2015.1114338

    Article  CAS  Google Scholar 

  2. Fiebig M, Lottermoser T, Meier D, Trassin M (2016) The evolution of multiferroics. Nat Rev Mater 1(8):14. https://doi.org/10.1038/natrevmats.2016.46

    Article  CAS  Google Scholar 

  3. Lakshmi SD, Banu IBS (2019) Multiferroism and magnetoelectric coupling in single-phase Yb and X (X = Nb, Mn, Mo) co-doped BiFeO3 ceramics. J Sol-Gel Sci Technol 89(3):713–721. https://doi.org/10.1007/s10971-018-4901-x

    Article  CAS  Google Scholar 

  4. Song Gl SuJ, Yang H, Zhang N, Chang F (2018) Modified crystal structure, dielectric properties, and magnetic phase transition temperature of Ca doped BiFeO3 ceramic. J Sol-Gel Sci Technol 85(2):421–430. https://doi.org/10.1007/s10971-017-4541-6

    Article  CAS  Google Scholar 

  5. Vopson MM (2015) Fundamentals of multiferroic materials and their possible applications. Crit Rev Solid State Mat Sci 40(4):223–250. https://doi.org/10.1080/10408436.2014.992584

    Article  CAS  Google Scholar 

  6. Wang T, Song S-H, Wang X-L, Chen J-J, Tan M-L (2018) Chemical substitution-induced structure transition and enhanced magnetic and optical properties of sol–gel synthesized multiferroic BiFeO3 nanoparticles. J Sol-Gel Sci Technol 85(2):356–368. https://doi.org/10.1007/s10971-017-4552-3

    Article  CAS  Google Scholar 

  7. Liu YK, Wong HF, Lam KK, Mak CL, Leung CW (2019) Tuning ferromagnetic properties of LaMnO3 films by oxygen vacancies and strain. J Magn Magn Mater 481:85–92. https://doi.org/10.1016/j.jmmm.2019.03.001

    Article  CAS  Google Scholar 

  8. Das R, Midya A, Kumari M, Chaudhuri A, Yu XJ, Rusydi A, Mahendiran R (2019) Enhanced magnetocaloric effect driven by hydrostatic pressure in Na-doped LaMnO3. J Phys Chem C 123(6):3750–3757. https://doi.org/10.1021/acs.jpcc.8b09964

    Article  CAS  Google Scholar 

  9. Iqbal M, Khan MN, Khan AA (2018) Structural, magnetic, magnetocaloric and critical behavior studies in the vicinity of the paramagnetic to ferromagnetic phase transition temperature in LaMnO3+delta compound. J Magn Magn Mater 465:670–677. https://doi.org/10.1016/j.jmmm.2018.06.026

    Article  CAS  Google Scholar 

  10. Chiabrera F, Garbayo I, Pla D, Burriel M, Wilhelm F, Rogalev A, Nunez M, Morata A, Tarancon A (2019) Unraveling bulk and grain boundary electrical properties in La0.8Sr0.2Mn1-yO3 +/-delta thin films. APL Mater 7(1):8. https://doi.org/10.1063/1.5054576

    Article  CAS  Google Scholar 

  11. Chou CC, Huang CL, Mukherjee S, Chen QY, Sakurai H, Belik AA, Takayama-Muromachi E, Yang HD (2009) Multiple magnetic transitions in multiferroic BiMnO3. Phys Rev B 80(18):6. https://doi.org/10.1103/PhysRevB.80.184426

    Article  CAS  Google Scholar 

  12. Lee BW, Yoo PS, Nam VB, Toreh KRN, Jung CU (2015) Magnetic and electric properties of stoichiometric BiMnO3 thin films. Nanoscale Res Lett 10:5. https://doi.org/10.1186/s11671-015-0759-9

    Article  CAS  Google Scholar 

  13. Iliev MN, Litvinchuk AP, Abrashev MV, Ivanov VG, Lee HG, McCarroll WH, Greenblatt M, Meng RL, Chu CW (2000) Raman monitoring of the dynamical Jahn-Teller distortions in rhombohedral antiferromagnetic LaMnO3 and ferromagnetic magnetoresistive La0.98Mn0.96O3. Physics C 341:2257–2258. https://doi.org/10.1016/s0921-4534(00)01103-5

    Article  Google Scholar 

  14. Hosseini SA, Mehri B, Niaei A, Izadkhah B, Alvarez-Galvan C, Fierro JGL (2018) Selective catalytic reduction of NOx by CO over LaMnO3 nano perovskites prepared by microwave and ultrasound assisted sol–gel method. J Sol-Gel Sci Technol 85(3):647–656. https://doi.org/10.1007/s10971-017-4568-8

    Article  CAS  Google Scholar 

  15. Alonso JA, MartinezLope MJ, Casais MT, MacManusDriscoll JL, deSilva P, Cohen LF, FernandezDiaz MT (1997) Non-stoichiometry, structural defects and properties of LaMnO3+δ with high δ values (0.1<=δ<=0.29). J Mater Chem 7(10):2139–2144. https://doi.org/10.1039/a704088a

    Article  CAS  Google Scholar 

  16. Kamata K, Nakajima T, Hayashi T, Nakamura T (1978) Nonstoichiometric behavior and phase stability of rare earth manganites at 1200 °C: (1). LaMnO3 Mater Res Bull 13(1):49–54. https://doi.org/10.1016/0025-5408(78)90026-0

    Article  CAS  Google Scholar 

  17. Topfer J, Goodenough JB (1997) LaMnO3+δ revisited. J Solid State Chem 130(1):117–128. https://doi.org/10.1006/jssc.1997.7287

    Article  CAS  Google Scholar 

  18. Tola PS, Kim HS, Kim DH, Phan TL, Rhyee JS, Shon WH, Yang DS, Manh DH, Lee BW (2017) Tunable magnetic properties and magnetocaloric effect of off-stoichiometric LaMnO3 nanoparticles. J Phys Chem Solids 111:219–228. https://doi.org/10.1016/j.jpcs.2017.07.022

    Article  CAS  Google Scholar 

  19. Belik AA, Iikubo S, Yokosawa T, Kodama K, Igawa N, Shamoto S, Azuma M, Takano M, Kimoto K, Matsui Y, Takayama-Muromachi E (2007) Origin of the monoclinic-to-monoclinic phase transition and evidence for the centrosymmetric crystal structure of BiMnO3. J Am Chem Soc 129(4):971–977. https://doi.org/10.1021/ja0664032

    Article  CAS  Google Scholar 

  20. Acharya SA, Gaikwad VM, Kulkarni SK, Despande UP (2017) Low pressure synthesis of BiMnO3 nanoparticles: anomalous structural and magnetic features. J Mater Sci 52(1):458–466. https://doi.org/10.1007/s10853-016-0345-2

    Article  CAS  Google Scholar 

  21. Sugawara F, Iiida S, Syono Y, Akimoto S-i (1968) Magnetic properties and crystal distortions of BiMnO3 and BiCrO3. J Phys Soc Jpn 25(6):1553–1558. https://doi.org/10.1143/JPSJ.25.1553

    Article  CAS  Google Scholar 

  22. Multiferroic Materials (2017). CRC Press, Boca Raton. https://doi.org/10.1201/9781315372532

  23. Joseph DP, Lin JW, Kumar NP, Chen WC, Lin JG (2016) Isovalent Bi3+ substitution induced structural and magnetic transitions in LaMnO3 J Magn Magn Mater 418:68–75. https://doi.org/10.1016/j.jmmm.2016.02.003

    Article  CAS  Google Scholar 

  24. Lin YQ, Wu YJ, Gu SP, Chen XM (2009) Contribution of electron hopping on colossal dielectric response of Bi-substituted LaMnO3 ceramics. Ferroelectrics 388:133–139. https://doi.org/10.1080/00150190902966800

    Article  CAS  Google Scholar 

  25. Troyanchuk IO, Mantytskaja OS, Szymczak H, Shvedun MY (2002) Magnetic phase transitions in the system La1-xBixMnO3+λ. Low Temp Phys 28(7):569–573. https://doi.org/10.1063/1.1496669

    Article  CAS  Google Scholar 

  26. Zhang HG, Li YT, Dong XG, Hou QT, Huang YC, Liu H, Li Q (2013) X-ray absorption spectroscopy and photoemission study of Bi-doped LaMnO3. J Phys Conf Ser 430. https://doi.org/10.1088/1742-6596/430/1/012072

    Google Scholar 

  27. Zhao YD, Park J, Jung RJ, Noh HJ, Oh SJ (2004) Structure, magnetic and transport properties of La1-xBixMnO3. J Magn Magn Mater 280(2–3):404–411. https://doi.org/10.1016/j.jmmm.2004.06.024

    Article  CAS  Google Scholar 

  28. Gajek M, Bibes M, Wyczisk F, Varela M, Fontcuberta J, Barthelemy A (2007) Growth and magnetic properties of multiferroic LaxBi1-xMnO3 thin films. Phys Rev B 75(17):7. https://doi.org/10.1103/PhysRevB.75.174417

    Article  CAS  Google Scholar 

  29. Zarkov A, Stanulis A, Salkus T, Kezionis A, Jasulaitiene V, Ramanauskas R, Tautkus S, Kareiva A (2016) Synthesis of nanocrystalline gadolinium doped ceria via sol–gel combustion and sol–gel synthesis routes. Ceram Int 42(3):3972–3988. https://doi.org/10.1016/j.ceramint.2015.11.066

    Article  CAS  Google Scholar 

  30. Nikolić D, Panjan M, Blake GR, Tadić M (2015) Annealing-dependent structural and magnetic properties of nickel oxide (NiO) nanoparticles in a silica matrix. J Eur Ceram Soc 35(14):3843–3852. https://doi.org/10.1016/j.jeurceramsoc.2015.06.024

    Article  CAS  Google Scholar 

  31. Kopanja L, Milosevic I, Panjan M, Damnjanovic V, Tadic M (2016) Sol–gel combustion synthesis, particle shape analysis and magnetic properties of hematite (α-Fe2O3) nanoparticles embedded in an amorphous silica matrix. Appl Surf Sci 362:380–386. https://doi.org/10.1016/j.apsusc.2015.11.238

    Article  CAS  Google Scholar 

  32. Tadic M, Nikolic D, Panjan M, Blake GR (2015) Magnetic properties of NiO (nickel oxide) nanoparticles: blocking temperature and Neel temperature. J Alloy Compd 647:1061–1068. https://doi.org/10.1016/j.jallcom.2015.06.027

    Article  CAS  Google Scholar 

  33. Tadic M, Savic SM, Jaglicic Z, Vojisavljevic K, Radojkovic A, Prsic S, Nikolic D (2014) Magnetic properties of NiMn2O4−δ (nickel manganite): multiple magnetic phase transitions and exchange bias effect. J Alloy Compd 588:465–469. https://doi.org/10.1016/j.jallcom.2013.11.025

    Article  CAS  Google Scholar 

  34. Zarkov A, Mikoliunaite L, Katelnikovas A, Tautkus S, Kareiva A (2018) Preparation by different methods and analytical characterization of gadolinium-doped ceria. Chem Pap 72(1):129–138. https://doi.org/10.1007/s11696-017-0264-y

    Article  CAS  Google Scholar 

  35. Zarkov A, Stanulis A, Sakaliuniene J, Butkute S, Abakeviciene B, Salkus T, Tautkus S, Orliukas AF, Tamulevicius S, Kareiva A (2015) On the synthesis of yttria-stabilized zirconia: a comparative study. J Sol-Gel Sci Technol 76(2):309–319. https://doi.org/10.1007/s10971-015-3778-1

    Article  CAS  Google Scholar 

  36. Markovic D, Kusigerski V, Tadic M, Blanusa J, Antisari MV, Spasojevic V (2008) Magnetic properties of nanoparticle La0.7Ca0.3MnO3 prepared by glycine–nitrate method without additional heat treatment. Scr Mater 59(1):35–38. https://doi.org/10.1016/j.scriptamat.2008.02.020

    Article  CAS  Google Scholar 

  37. Markovic D, Kusigerski V, Tadic M, Blanusa J, Jaglicic Z, Cvjeticanin N, Spasojevic V (2010) The influence of the heat treatment on the structural and magnetic properties of nanoparticle La0.7Ca0.3MnO3 prepared by glycine–nitrate method. J Alloy Compd 494(1):52–57. https://doi.org/10.1016/j.jallcom.2010.01.062

    Article  CAS  Google Scholar 

  38. Tadić M, Marković D, Panjan M, Spasojević V (2016) Solution combustion synthesis method and magnetic properties of synthesized polycrystalline calcium manganite CaMnO3−δ powder. Ceram Int 42(16):19365–19371. https://doi.org/10.1016/j.ceramint.2016.09.109

    Article  CAS  Google Scholar 

  39. Jain SR, Adiga KC, Verneker VRP (1981) A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust Flame 40(1):71–79. https://doi.org/10.1016/0010-2180(81)90111-5

    Article  CAS  Google Scholar 

  40. Barnabe A, Gaudon M, Bernard C, Laberty C, Durand B (2004) Low temperature synthesis and structural characterization of over-stoichiometric LaMnO3+delta perovskites. Mater Res Bull 39(4–5):725–735. https://doi.org/10.1016/j.materresbull.2003.10.008

    Article  CAS  Google Scholar 

  41. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32(SEP1):751–767. https://doi.org/10.1107/s0567739476001551

    Article  Google Scholar 

  42. Nakamoto K (2001) Infrared and raman spectra of inorganic and coordination compounds. Handbook of vibrational spectroscopy. https://doi.org/10.1002/0470027320.s4104

  43. Kebin L, Xijun L, Kaigui Z, Jingsheng Z, Yuheng Z (1997) Infrared absorption spectra of manganese oxides La1−x−yRyCaxMnO3−δ. J Appl Phys 81(10):6943–6947. https://doi.org/10.1063/1.365234

    Article  CAS  Google Scholar 

  44. Atsarkin VA, Demidov VV, Balbashov AM (2004) Anomalous slowing down of the longitudinal spin relaxation near the antiferromagnetic phase transition in LaMnO3 manganite. JETP Lett 80(9):593–596. https://doi.org/10.1134/1.1851641

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work has been done in frame of the project TransFerr. This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 778070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksej Zarkov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karoblis, D., Mazeika, K., Baltrunas, D. et al. Novel synthetic approach to the preparation of single-phase BixLa1−xMnO3+δ solid solutions. J Sol-Gel Sci Technol 93, 650–656 (2020). https://doi.org/10.1007/s10971-019-05098-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05098-w

Keywords

Navigation