Skip to main content
Log in

Nickel ferrite nanoparticles synthesis from novel fumarato-hydrazinate precursor

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nickel ferrite is technologically important magnetic material extensively used in high frequency applications such as microwave device due to its high resistivity and sufficiently low losses. It also finds application in the ferrofluids technology. Therefore, ultrafine nickel ferrite was prepared by autocatalytic combustion of novel nickel ferrous fumarato-hydrazinate precursor. The precursor was characterized by IR, AAS, TG and DTA, and a chemical formula of NiFe2(C4H2O4)3·6N2H4 was fixed. This precursor once ignited with a burning splinter at room temperature, glows and the glow spreads over the entire bulk completing the autocatalytic combustion of the precursor to ultrafine ferrite. The single phase formation of ultrafine nickel ferrite was confirmed by XRD, IR spectra and TEM. The average particle size of the ultrafine ferrite was found to be ∼20 nm by TEM. The observed lower value of saturation magnetization for nickel ferrite was due to the superparamagnetic nature of the particles, which increased with the increasing sintering temperature. The ultrafine nickel ferrite was then sintered at 1000°C for 5 h and was characterized by XRD, IR spectra, SEM and TEM. The variation of resistivity, Seebeck coefficient and a.c. susceptibility as a function of temperature was measured for NiFe2O4 and the results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. C. Patil, S. T. Aruna and S. Ekambaram, Curr. Opin. Sol. Stat. Mater. Sci., 2 (1997) 158.

    Article  CAS  Google Scholar 

  2. D. Gajapathy, K. C. Patil and V. R. Pai Vernekar, Mater. Res. Bull., 17 (1982) 29.

    Article  Google Scholar 

  3. J. S. Budkuley and K. C. Patil, Synth. React. Inorg. Met.-Org. Chem., 21 (1991) 709.

    Article  CAS  Google Scholar 

  4. P. Ravindranathan and K. C. Patil, Thermochim. Acta, 71 (1983) 53.

    Article  CAS  Google Scholar 

  5. G. V. Mahesh and K. C. Patil, Thermochim. Acta, 99 (1986) 188.

    Article  Google Scholar 

  6. B. N. Sivasankar and S. Govindarajan, Z. Naturforsch., 1994, 49b, 950.

    Google Scholar 

  7. B. N. Sivasankar and S. Govindarajan, Ind. J. Chem., 33A (1994) 329.

    CAS  Google Scholar 

  8. B. N. Sivasankar and S. Govindarajan, Synth. React. Inorg. Met.-Org. Chem., 24 (1994) 1573.

    Article  CAS  Google Scholar 

  9. V. M. S. Verenkar and K. S. Rane, ’Proc. 10th Nat. Symp. on Thermal Analysis’, Mumbai, India 1995, p. 171.

    Google Scholar 

  10. V. M. S. Verenkar and K. S. Rane, ’Proc. 10th Nat. Symp. on Thermal Analysis’, Mumbai, India 1995, p. 175.

    Google Scholar 

  11. S. Govindarajan, S. U. Nasrin Banu, N. Saravanan and B. N. Sivasankar, Proc. Indian Acad. Sci. (Chem. Sci.), 107 (1995) 559.

    CAS  Google Scholar 

  12. V. M. S. Verenkar and K. S. Rane, ’Proc. 12th Nat. Symp. on Thermal Analysis’, Gorakhpur, India 2000, p. 194.

    Google Scholar 

  13. S. Y. Sawant, V. M. S. Verenkar and S. C. Mojumdar, J. Therm. Anal. Cal., 90 (2007) 669.

    Article  CAS  Google Scholar 

  14. S. C. Mojumdar, M. Sain, R. Prasad, L. Sun and J. E. S. Venart, J. Therm. Anal. Cal., 90 (2007) 653.

    Article  CAS  Google Scholar 

  15. M. Dovál’, M. Palou and S. C. Mojumdar, J. Therm. Anal. Cal., 86 (2006) 595.

    Article  Google Scholar 

  16. H. S. Rathore, G. Varshney, S. C. Mojumdar and M. T. Saleh, J. Therm. Anal. Cal., 90 (2007) 681.

    Article  CAS  Google Scholar 

  17. D. Czakis-Sulikowska, A. Czylkowska and A. Malinowska, J. Therm. Anal. Cal., 67 (2002) 667.

    Article  CAS  Google Scholar 

  18. I. Janotka and L’. Krajči, CERAMICS-Silikaty, 39 (1995) 105.

    CAS  Google Scholar 

  19. K. G. Varshney, A. Agrawal and S. C. Mojumdar, J. Therm. Anal. Cal., 90 (2007) 721.

    Article  CAS  Google Scholar 

  20. L’. Krajči, I. Janotka, I. Kraus and P. Jamnicky, Ceram. Silik., 51 (2007) 217.

    Google Scholar 

  21. G. Madhurambal, P. Ramasamy, P. A. Srinivasan and S. C. Mojumdar, J. Therm. Anal. Cal., 90 (2007) 673.

    Article  CAS  Google Scholar 

  22. S. C. Mojumdar and L. Raki, J. Therm. Anal. Cal., 85 (2006) 99.

    Article  CAS  Google Scholar 

  23. K. G. Varshney, A. Agrawal and S. C. Mojumdar, J. Therm. Anal. Cal., 90 (2007) 731.

    Article  CAS  Google Scholar 

  24. S. C. Mojumdar, M. Melník and E. Jóna, J. Anal. Appl. Pyrolysis, 53 (2000) 149.

    Article  CAS  Google Scholar 

  25. G. Madhurambal, S. Parthiban, G. Madhurambal, R. Dhanasekaran and S. C. Mojumdar, J. Therm. Anal. Cal., DOI: 10.1007/s10973-008-9181-1.

  26. B. Borah and J. L. Wood, Can. J. Chem., 50 (1976) 2470.

    Article  Google Scholar 

  27. S. C. Mojumdar, K. G. Varshney and A. Agrawal, Res. J. Chem. Environ., 10 (2006) 89.

    CAS  Google Scholar 

  28. H. S. Rathore, K. Ishratullah, C. Varshney, G. Varshney and S. C. Mojumdar, J. Therm. Anal. Cal., DOI: 10.1007/s10973-008-9191-z.

  29. A. Ramadevi and K. Srinivasan, Res. J. Chem. Environ., 9 (2005) 54.

    CAS  Google Scholar 

  30. S. Meenakshisundaram, S. Parthiban, G. Madhurambal and S. C. Mojumdar, J. Therm. Anal. Cal., DOI: 10.1007/s10973-008-9182-0.

  31. I. Janotka and L’. Krajči, Int. J. Cem. Comp. Light. Concr., 11 (1989) 221.

    Article  CAS  Google Scholar 

  32. J. S. Skoršepa, K. Györyová and M. Melník, J. Thermal Anal., 44 (1995) 169.

    Article  Google Scholar 

  33. D. Ondrušová, E. Jóna and P. Śimon, J. Therm. Anal. Cal., 67 (2002) 147.

    Article  Google Scholar 

  34. E. Jóna, E. Rudinska, M. Sapietova, M. Pajtasova and D. Ondrusova, Res. J. Chem. Environ., 10 (2006) 31.

    Google Scholar 

  35. M. Kubranová, E. Jóna, E. Rudinská, K. Nemčeková, D. Ondrušová and M. Pajtášová, J. Therm. Anal. Cal., 74 (2003) 251.

    Article  Google Scholar 

  36. E. Jóna, M. Hvastijová and J. Kohout, J. Thermal Anal., 41 (1994) 161.

    Article  Google Scholar 

  37. D. Czakis-Sulikowska and A. Czylkowska, J. Thermal. Anal. Cal., 71 (2003) 395.

    Article  CAS  Google Scholar 

  38. S. C. Mojumdar, M. Melník and E. Jóna, J. Therm. Anal. Cal., 56 (1999) 533.

    Article  CAS  Google Scholar 

  39. R. A. Porob, S. Z. Khan, S. C. Mojumdar and V. M. S. Verenkar, J. Therm. Anal. Cal., 86 (2006) 605.

    Article  CAS  Google Scholar 

  40. S. C. Mojumdar, L. Martiška, D. Valigura and M. Melník, J. Therm. Anal. Cal., 74 (2003) 905.

    Article  CAS  Google Scholar 

  41. E. A. Ukraintseva, V. A. Logvinenko, D. V. Soldatov and T. A. Chingina, J. Therm. Anal. Cal., 75 (2004) 337.

    Article  CAS  Google Scholar 

  42. S. C. Mojumdar, M. Melník and E. Jóna, J. Therm. Anal. Cal., 56 (1999) 541.

    Article  CAS  Google Scholar 

  43. M. T. Saleh, S. C. Mojumdar and M. Lamoureux, Res. J. Chem. Environ., 10 (2006) 14.

    CAS  Google Scholar 

  44. S. C. Mojumdar, G. Madhurambal and M. T. Saleh, J. Therm. Anal. Cal., 81 (2005) 205.

    Article  CAS  Google Scholar 

  45. K. G. Varshney, A. Agrawal and S. C. Mojumdar, J. Therm. Anal. Cal., 81 (2005) 183.

    Article  CAS  Google Scholar 

  46. E. Jóna, E. Rudinská, M. Sapietová, M. Pajtášová, D. Ondrušová, V. Jorík and S. C. Mojumdar, Res. J. Chem. Environ., 9 (2005) 41.

    Google Scholar 

  47. S. C. Mojumdar, J. Miklovic, A. Krutošíková, D. Valigura and J. M. Stewart, J. Therm. Anal. Cal., 81 (2005) 211.

    Article  CAS  Google Scholar 

  48. S. C. Mojumdar, Res. J. Chem. Environ., 9 (2005) 23–27.

    CAS  Google Scholar 

  49. G. Madhurambal, S. C. Mojumdar, S. Hariharan and P. Ramasamy, J. Therm. Anal. Cal., 78 (2004) 125.

    Article  CAS  Google Scholar 

  50. S. C. Mojumdar, J. Therm. Anal. Cal., 64 (2001) 629.

    Article  CAS  Google Scholar 

  51. A. I. Vogel, ’A Text Book of Qualitative Inorganic Analysis’, ELBS and Longman, London 1978, p. 389.

    Google Scholar 

  52. S. D. Likhite, C. Radhakrishnamurthy and P. W. Sahasrabudhe, Rev. Sci. Instrum., 25 (1965) 302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Mojumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

More, A., Verenkar, V.M.S. & Mojumdar, S.C. Nickel ferrite nanoparticles synthesis from novel fumarato-hydrazinate precursor. J Therm Anal Calorim 94, 63–67 (2008). https://doi.org/10.1007/s10973-008-9189-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9189-6

Keywords

Navigation