Skip to main content
Log in

Thermochemistry of chromone- and coumarin-3-carboxylic acid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The standard (pº = 0.1 MPa) molar enthalpies of formation in the condensed state of chromone-3-carboxylic acid and coumarin-3-carboxylic acid were derived from the standard molar energies of combustion in oxygen at T = 298.15 K, measured by combustion calorimetry. The standard molar enthalpies of sublimation were obtained by Calvet microcalorimetry. From these values the standard molar enthalpies in the gaseous phase, at T = 298.15 K, were derived. Additionally estimates of the enthalpies of formation, of all the studied compounds in gas-phase, were performed using DFT and other more accurate correlated calculations (MCCM and G3MP2), together with appropriate isodesmic, homodesmic or atomization reactions. There is a reasonable agreement between computational and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adeleke BB, Weir D, Depew MC, Wan JKS. An esr and CIDEP study of the photoreduction of chromone and chromanone and their organometallic adducts. Can J Chem. 1984;62:117–20.

    Article  CAS  Google Scholar 

  2. Zhao P, Li J, Yang G. Synthesis and insecticidal activity of chromanone and chromone analogues of diacylhydrazines. Bioorg Med Chem. 2007;15:1888–95.

    Article  CAS  Google Scholar 

  3. Cottiglia F, Dhanapal B, Sticher O, Heilmann J. New chromanone acids with antibacterial activity from Calophyllum brasiliense. J Nat Prod. 2004;67:537–41.

    Article  CAS  Google Scholar 

  4. Aldrich. Handbook of Fine Chemicals and Laboratory Equipment. Madrid, Spain; 2004–2005.

  5. Plato C, Glasgow AR Jr. Differential scanning calorimetry as a general method for determining purity and heat of fusion of high-purity organic chemicals. Application to 95 compounds. Anal Chem. 1969;41:330–6.

    Article  CAS  Google Scholar 

  6. Sabbah R, Xu-wu A, Chickos JS, Leitão MLP, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331:93–204.

    Article  CAS  Google Scholar 

  7. Ribeiro da Silva MAV, Ribeiro da Silva MDMC, Pilcher G. The construction, calibration and use of a new high-precision static bomb calorimeter. Rev Port Quím. 1984;26:163–72.

    CAS  Google Scholar 

  8. Ribeiro da Silva MAV, Ribeiro da Silva MDMC, Pilcher G. Enthalpies of combustion of 1,2-dihydroxybenzene and of six alkylsubstituted 1,2-dihydroxybenzenes. J Chem Thermodyn. 1984;16:1149–55.

    Article  CAS  Google Scholar 

  9. Santos LMNBF, Silva MT, Schröder B, Gomes L. Labtermo: methodologies for the calculation of the corrected temperature rise in isoperibol calorimetry. J Therm Anal Calorim. 2007;89:175–80.

    Article  CAS  Google Scholar 

  10. Coops J, Jessup RS, Van Nes K. Experimental thermochemistry: calibration of calorimeters for reactions in a bomb at constant volume. In: Rossini FD, editor. Interscience: New York; 1956. vol. 1, Chap. 3.

  11. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, et al. The NBS tables of chemical thermodynamic properties. J Phys Chem Ref Data. 1982;11(Suppl 2).

  12. Washburn EW. Standard states for bomb calorimetry. J Res Nat Bur Stand (US). 1933;10:525–58.

    CAS  Google Scholar 

  13. Hubbard WN, Scott DW, Waddington G. Experimental thermochemistry. In: Rossini FD, editor. Interscience: New York; 1956. vol. 1, Chap. 5.

  14. Wieser ME. Atomic weights of the elements 2005 (IUPAC Technical Report). Pure Appl Chem. 2006;78:2051–66.

    Article  CAS  Google Scholar 

  15. Adedeji FA, Brown DLS, Connor JA, Leung M, Paz-Andrade MI, Skinner HA. Thermochemistry of arene chromium tricarbonyls and the strengths of arene-chromium bonds. J Organomet Chem. 1975;97:221–8.

    Article  CAS  Google Scholar 

  16. Chickos JS, Acree WE. Enthalpies of sublimation of organic and organometallic compounds. J Phys Chem Ref Data. 2002;31:537–698.

    Article  CAS  Google Scholar 

  17. Becke D. Density–functional thermochemistry. 3. The role of exact exchange. J Chem Phys. 1993;98:5648–52.

    Article  CAS  Google Scholar 

  18. Lee T, Yang WT, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1998;37:785–9.

    Article  Google Scholar 

  19. Hariharan PC, Pople JA. The effects of d-functions on molecular orbital energies for hydrocarbons. Chem Phys Lett. 1972;66:217–9.

    Article  Google Scholar 

  20. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, et al. Self-consistent molecular orbital methods. XXIII. A polarization type basis set for second-row elements. J Chem Phys. 1982;77:3654–65.

    Article  CAS  Google Scholar 

  21. Scott PA, Radom L. Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Moller-Plesset, quadratic configuration interaction, density functional theory and semiempiric scale factors. J Chem Phys. 1996;100:16502–13.

    Article  CAS  Google Scholar 

  22. Hariharan PC, Pople JA. Influence of polarization functions on molecular-orbital hydrogenation energies. Theoret Chim Acta. 1973;28:213–22.

    Article  CAS  Google Scholar 

  23. Frisch MJ, Pople JA, Binkley JS. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys. 1884;80:3265–9.

    Article  Google Scholar 

  24. Dunning TH Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys. 1989;90:1007–23.

    Article  CAS  Google Scholar 

  25. Woon DE, Dunning TH Jr. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys. 1993;98:1358–71.

    Article  CAS  Google Scholar 

  26. Woon DE, Dunning TH Jr. Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J Chem Phys. 1994;100:2975–88.

    Article  CAS  Google Scholar 

  27. Wilson AK, Woon DE, Peterson KA, Dunning TH Jr. Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J Chem Phys. 1999;110:7667–76.

    Article  CAS  Google Scholar 

  28. Lynch BJ, Truhlar DG. Robust and affordable multicoefficient methods for thermochemistry and thermochemical kinetics: the MCCM/3 suite and SAC/3. J Phys Chem A. 2003;107:3898–906.

    Article  CAS  Google Scholar 

  29. Zhao Y, Lynch BJ, Truhlar DG. Multi-coefficient extrapolated density functional theory for thermochemistry and thermochemical kinetics. Phys Chem Chem Phys. 2005;7:43–52.

    Article  CAS  Google Scholar 

  30. Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA. Gaussian-3 theory using reduced Møller-Plesset order. J Chem Phys. 1999;110:4703–9.

    Article  CAS  Google Scholar 

  31. Reed E, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev. 1988;88:899–926.

    Article  CAS  Google Scholar 

  32. Foster JP, Weinhold F. Natural hybrid orbitals. J Am Chem Soc. 1980;102:7211–8.

    Article  CAS  Google Scholar 

  33. Reed E, Weinhold F. Natural bond orbital analysis of near-Hartree–Fock water dimer. J Chem Phys. 1983;78:4066–73.

    Article  CAS  Google Scholar 

  34. GAMESS-UK is a package of ab initio programs written by Guest MF, van Lenthe JH, Kendrick J, Schoffel K, and Sherwood P, with contributions from Amos RD, Buenker RJ, van Dam HJJ, Dupuis M, Handy NC, Hillier IH, Knowles PJ, Bonacic-Koutecky V, von Niessen W, Harrison RJ, Rendell AP, Saunders VR, Stone AJ and de Vries AH. The package is derived from the originQMA_SOFT_VMMORAIS/dec_al GAMESS code due to Dupuis M, Spangler D and Wendoloski J, NRCC Software Catalog, vol. 1, Program No. QG01 (GAMESS); 1980.

  35. The DFT module within GAMESS-UK was developed by Dr. P. Young under the auspices of EPSRC’s Collaborative Computational Project No. 1 (CCP1) (1995–1997).

  36. Zhao Y, Truhlar DG. MLGAUSS-version 2.0. Minneapolis: University of Minnesota; 2004.

    Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 03, Revision C.02. Wallingford, CT: Gaussian, Inc.; 2004.

  38. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Hommes NJRvE. Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc. 1996;118:6317–8.

    Article  CAS  Google Scholar 

  39. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, et al. NBO 5.0. Madison: Theoretical chemistry Institute, University of Wisconsin; 2001.

    Google Scholar 

  40. Rossini FD. Experimental thermochemistry: assignment of uncertainties to thermochemical data. In: Rossini FD, editor. Interscience: New York; 1956. vol. 1, Chap. 14.

  41. CODATA. Recommended key values for thermodynamics, 1977. Report of the CODATA task group on key values for thermodynamics. J Chem Thermodyn. 1978;10:903–6.

    Article  Google Scholar 

  42. Pedley JB. Thermochemical data and structures of organic compounds, vol. 1. College Station, Texas: TRC Data Series; 1994.

    Google Scholar 

  43. Bertolasi V, Gilli P, Ferretti V, Gilli G. Evidence for resonance-assisted hydrogen bonding. 2. Intercorrelation between crystal structure and spectroscopic parameters in eight intramolecularly hydrogen bonded 1,3-diaryl-1,3-propanedione enols. J Am Chem Soc. 1991;113:4917–25.

    Article  CAS  Google Scholar 

  44. Wojtulewski S, Grabowski S. DFT and AIM studies on two-ring resonance assisted hydrogen bonds. J Mol Struct (THEOCHEM). 2003;621:285–91.

    Article  CAS  Google Scholar 

  45. Matos MAR, Morais VMF, Ribeiro da Silva MDMC, Marques MCF, Sousa EA, Castñeiras JP, et al. Thermochemical and theoretical studies of dimethylpyridine-2,6-dicarboxylate and pyridine-2,3-, pyridine-2,5-, and pyridine-2,6-dicarboxylic acids. J Chem Eng Data. 2005;50:1184–91.

    Article  CAS  Google Scholar 

  46. Matos MAR, Sousa CCS, Morais VMF, Liebman JF. Energetics of coumarin and chromone. J Phys Chem B. 2009;113:11216–21.

    Article  CAS  Google Scholar 

  47. Matos MAR, Sousa CCS, Morais VMF. Experimental and computational thermochemistry of the isomers: chromanone, 3-isochromanone, and dihydrocoumarin. J Chem Thermodyn. 2009;41:308–14.

    Article  CAS  Google Scholar 

  48. Matos MAR, Sousa CCS, Morais VMF. Experimental and computational thermochemistry of 1,4-benzodioxan and its 2-R derivatives. J Chem Thermodyn. 2008;40:1485–9.

    Article  CAS  Google Scholar 

  49. Matos MAR, Sousa CCS, Morais VMF. Experimental and computational thermochemistry of 1,4-benzodioxan and its 6-R derivatives. J Phys Chem A. 2008;112:7961–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Fundação para a Ciência e a Tecnologia, F.C.T., Lisbon, Portugal, and to FEDER for financial support to Centro de Investigação em Química of the University of Porto (CIQ-UP). Clara C. S. Sousa thanks the F.C.T. for the award of her doctoral scholarship (BD/19650/2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Agostinha R. Matos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matos, M.A.R., Sousa, C.C.S. & Morais, V.M.F. Thermochemistry of chromone- and coumarin-3-carboxylic acid. J Therm Anal Calorim 100, 519–526 (2010). https://doi.org/10.1007/s10973-009-0655-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0655-6

Keywords

Navigation