Skip to main content
Log in

Study on thermal decomposition of calix[6]arene and calix[8]arene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal decomposition kinetics of calix[6]arene (C6) and calix[8]arene (C8) were studied by Thermogravimetry analysis (TG) and Differential thermal analysis (DTA). TG was done under static air atmosphere with dynamic heating rates of 1.0, 2.5, 5.0, and 10.0 K min−1. Model-free methods such as Friedman and Ozawa–Flynn–Wall were used to evaluate the kinetic parameters such as activation energy (E a) and pre-exponential factors (ln A). Model-fitting method such as linear regression was used for the evaluation of optimum kinetic triplets. The kinetic parameters obtained are comparable with both the model-free and model-fitting methods. Within the tested models, the thermal decomposition of C6 and C8 are best described by a three dimensional Jander’s type diffusion. The antioxidant efficiency of C6 and C8 was tested for the decomposition of polypropylene (PP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gutsche CD. Calixarenes. Monographs in supramolecular chemistry. London: Royal Society of Chemistry; 1989.

    Google Scholar 

  2. Asfari Z, Bohmer V, Harrowfield J, Vicens J, Saadioui M. Calixarenes 2001. Netherlands: Kluwer Academic Publishers; 2001.

    Google Scholar 

  3. Radhakrishnan Nair MN, Thomas GV, Gopinathan Nair MR. Thermogravimetric analysis of PVC/ELNR blends. Polym Degrad Stab. 2007;92:189–96.

    Article  Google Scholar 

  4. Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of fibers: activation energy with dynamic thermo gravimetric analysis. Polym Degrad Stab. 2008;93:90–8.

    Article  CAS  Google Scholar 

  5. Vyazovkin S. Thermal analysis. Anal Chem. 2008;80:4301–16.

    Article  CAS  Google Scholar 

  6. Lazzarotto M, Nachtigall FF, Schnitzler E, Castellano EE. Thermo gravimetric analysis of supramolecular complexes of p-tert-butylcalix[6]arene and ammonium cations: crystal structure of diethylammonium complex. Thermochim Acta. 2005;429:111–7.

    Article  CAS  Google Scholar 

  7. Schatz J, Schildbach F, Lentz A, Rastatter S. Thermal gravimetry, mass spectrometry and solid-state 13C NMR spectroscopy-simple and efficient methods to characterize the inclusion behavior of p-tert-butylcalix[n]arenes. J Chem Soc Perkin Trans 2. 1998;(1):75–7.

  8. Pastor SD, Odorisio P. Acylated calixarene stabilizers. US Patent 4,617,336. 1986.

  9. Seiffarth K, Schulz M, Gormar G, Bachmann J. Calix[n]arenes-new light stabilizers for polyolefins. Polym Degrad Stab. 1989;24:73–80.

    Article  CAS  Google Scholar 

  10. Feng W, Yuan LH, Zheng SY, Huang GL, Qiao JL, Zhou Y. The effect of p-tert-butylcalix[n]arene on γ-radiation degradation of polypropylene. Radiat Phys Chem. 2000;57:425–9.

    Article  CAS  Google Scholar 

  11. Zaharescu T, Jipa S, Setnescu R, Santos C, Gigante B, Mihalcea I, Podina C, Gorghiu LM. Thermal stability of additivated isotactic polypropylene. Polym Bull. 2002;49:289–96.

    Article  CAS  Google Scholar 

  12. Jipa S, Zaharescu T, Setnescu R, Setnescu T, Dumitru M, Gorghiu LM, Mihalcea I, Bumbac M. Effect of calixarenes on thermal stability of polyethylenes. Polym Degrad Stab. 2003;80:203–8.

    Article  CAS  Google Scholar 

  13. Pospisil J. Mechanistic action of phenolic antioxidants in polymers—a review. Polym Degrad Stab. 1988;20:181–202.

    Article  CAS  Google Scholar 

  14. Gutsche CD, Dhawan B, No KH, Muthukrishnan R. Calixarenes. 4. The synthesis, characterization and properties of the calixarenes from p-tert-butylphenol. J Am Chem Soc. 1981;103:3782–92.

    Article  CAS  Google Scholar 

  15. Gutsche CD, Lin LG. Calixarenes 12: the synthesis of functionalized calixarenes. Tetrahedron. 1986;42(6):1633–40.

    Article  CAS  Google Scholar 

  16. Galwey AK, Brown ME. Handbook of thermal analysis and calorimetry, vol. 1. Amsterdam: Elsevier; 1998.

    Google Scholar 

  17. Friedman H. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci. 1963;6(1):183–95.

    Google Scholar 

  18. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  19. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand. 1996;70A:487–523.

    Google Scholar 

  20. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and non-isothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  21. Swain SN, Rao KK, Nayak PL. Biodegradable polymers part II. Thermal degradation of biodegradable plastics cross-linked from formaldehyde-soy protein concentrate. J Therm Anal Calorim. 2005;79:33–8.

    Article  CAS  Google Scholar 

  22. Turmanova SC, Genieva SD, Dimitrova AS, Vlaev LT. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Exp Polym Lett. 2008;2(2):133–46.

    Article  CAS  Google Scholar 

  23. Chen F, Sorensen OT, Meng G, Peng D. Thermal decomposition of BaC2O4.5H2O Studied by stepwise isothermal analysis and non-isothermal thermogravimetry. J Therm Anal Calorim. 1998;53:397–410.

    Article  CAS  Google Scholar 

  24. Vyazovkin S. A unified approach to kinetic processing of non-isothermal data. Int J Chem Kinet. 1996;28:95–101.

    Article  CAS  Google Scholar 

  25. Pielichowski K, Njuguna J. Thermal degradation of polymeric materials. UK: Rapra Technology Limited; 2005.

    Google Scholar 

  26. Deligoz H, Ozen O, Cilgi GK, Cetisli H. A study on the thermal behaviours of parent calix[4]arenes and some azocalix[4]arene derivatives. Thermochim Acta. 2005;426:33–8.

    Article  Google Scholar 

  27. Zhu L, Chen J, Xu L, Lian X, Xu K, Chen M. Synthesis of 3,5-ditert-butyl-4-hydroxybenzoates and their thermal antioxidation behavior for polypropylene. Polym Degrad Stab. 2009;94:1906–13.

    Article  CAS  Google Scholar 

  28. Maskos Z, Khachatryan L, Dellinger B. Formation of the persistent primary radicals from the pyrolysis of tobacco. Energy Fuels. 2008;22:1027–33.

    Article  CAS  Google Scholar 

  29. Tanaka A, Yashiro H, Ishigaki A, Murai H. Time-resolved ESR study on complex radical pairs formed in the photolysis of methylene blue included in water-soluble sulfonated calixarenes. Appl Magn Reson. 2010;37:581–93.

    Article  Google Scholar 

  30. Wang Q, Li Y, Wu GS. ESR study of calix[4]arene by spin-trapping method. Appl Magn Reson. 2000;18:419–24.

    Article  CAS  Google Scholar 

  31. Qin Z, Xin Z, Jian-Bing Z, Jun T, Zhao-Tian F, Wan-Fu S. Radiation effect of Apocynum fiber. Nucl Sci Tech. 2006;17:38–42.

    Article  Google Scholar 

  32. Hedrick SA, Chuang SSC. Temperature programmed decomposition of polypropylene: in situ FTIR coupled with mass spectroscopy study. Thermochim Acta. 1998;315:159–68.

    Article  CAS  Google Scholar 

  33. Yang W, Manek R, Kolling WM, Brits M, Liebenberg W, De Villiers MM. Physicochemical characterization of hydrated 4-sulphonato-calix[n]arenas: thermal, structural and sorption properties. Supramol Chem. 2005;17:485–96.

    Article  CAS  Google Scholar 

  34. Aboulkas A, Harfi KE, Bouadili AE, Chanaa MB, Mokhlisse A. Pyrolysis kinetics of polypropylene morocco oil shale and their mixture. J Thermal Anal Calorim. 2007;89:203–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors K. Chennakesavulu and M. Raviathul Basariya Senior Research Fellows are grateful to Council of Scientific and Industrial Research (CSIR), New Delhi (India) for financial support. The authors are grateful to SAIF-NMR Facility, Indian Institute of Technology, Madras (India), NMR Centre-Indian Institute of Science, Bangalore (India) for providing the necessary spectral and analytical data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Chennakesavulu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chennakesavulu, K., Raviathul Basariya, M., Bhaskar Raju, G. et al. Study on thermal decomposition of calix[6]arene and calix[8]arene. J Therm Anal Calorim 103, 853–862 (2011). https://doi.org/10.1007/s10973-010-1065-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1065-5

Keywords

Navigation