Skip to main content
Log in

Thermal decomposition kinetics of potassium iodate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition of potassium iodate (KIO3) has been studied by both non-isothermal and isothermal thermogravimetry (TG). The non-isothermal simultaneous TG–differential thermal analysis (DTA) of the thermal decomposition of KIO3 was carried out in nitrogen atmosphere at different heating rates. The isothermal decomposition of KIO3 was studied using TG at different temperatures in the range 790–805 K in nitrogen atmosphere. The theoretical and experimental mass loss data are in good agreement for the thermal decomposition of KIO3. The non-isothermal decomposition of KIO3 was subjected to kinetic analyses by model-free approach, which is based on the isoconversional principle. The isothermal decomposition of KIO3 was subjected to both conventional (model fitting) and model-free (isoconversional) methods. It has been observed that the activation energy values obtained from all these methods agree well. Isothermal model fitting analysis shows that the thermal decomposition kinetics of KIO3 can be best described by the contracting cube equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vecchio S, Rodante F, Tomasssetti M. Thermal stability of disodium and calcium phosphomycin and the effects of the excipients evaluated by thermal analysis. J Pharma Biomed Anal. 2000;24:1111–23.

    Article  Google Scholar 

  2. Huang Y, Cheng Y, Alexander K, Dollimore D. The thermal analysis study of the drug captopril. Thermochim Acta. 2001;367:43–58.

    Article  Google Scholar 

  3. Dollimore D, O’Connell C. A comparison of the thermal decomposition of preservatives using thermogravimetry and rising temperature kinetics. Thermochim Acta. 1998;324:33–48.

    Article  CAS  Google Scholar 

  4. Halikia I, Neou-Syngouna P, Kolitsa D. Isothermal kinetic analysis of the thermal decomposition of magnesium hydroxide using thermogravimetric data. Thermochim Acta. 1998;320:75–88.

    Article  CAS  Google Scholar 

  5. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  6. Rodante F, Vecchio S, Tomassetti M. Kinetic analysis of thermal decomposition for penicillin sodium salts: model-fitting and model-free methods. J Pharm Biomed Anal. 2002;29:1031–43.

    Article  CAS  Google Scholar 

  7. Malek J, Mitsuhashi T, Criado JM. Kinetic analysis of solid-state processes. J Mater Res. 2001;16:1862–71.

    Article  CAS  Google Scholar 

  8. Benderskii VA, Makarov DE, Wight CA. Chemical dynamics at low temperatures. New York: Wiley; 1994. p. 385.

    Google Scholar 

  9. Brown ME, Dollimore D, Galwey AK. Reactions in the solid state, comprehensive chemical kinetics, vol. 22. Amsterdam: Elsevier; 1980. p. 340.

    Google Scholar 

  10. Brill TB, James KJ. Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives. Chem Rev. 1993;93:2667–92.

    Article  CAS  Google Scholar 

  11. Flynn JH. Thermal analysis. In: Mark HF, Bikales NM, Overberger CG, Menges G, editors. Encyclopedia of polymer science and engineering. NewYork: Wiley; 1989. p. 690.

    Google Scholar 

  12. Fatou JG. Crystallization kinetics. In: Mark HF, Bikales NM, Overberger CG, Menges G, editors. Encyclopedia of polymer science and engineering. New York: Wiley; 1989. p. 231.

    Google Scholar 

  13. Galwey AK. Is the science of thermal analysis kinetics based on solid foundations? A literature appraisal. Thermochim Acta. 2004;413:139–83.

    Article  CAS  Google Scholar 

  14. Dollimore D. Thermal analysis. Anal Chem. 1996;68:63–72.

    Article  CAS  Google Scholar 

  15. Galwey AK, Brown ME. Thermal decomposition of ionic solids. Amsterdam: Elsevier; 1999.

    Google Scholar 

  16. Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem. 2000;19:45–60.

    Article  CAS  Google Scholar 

  17. Kotler JM, Hinman NW, Richardson CD, Scott JR. Thermal decomposition behaviour of potassium and sodium jasorite synthesized in the presence of methyl amine and alanine. J Therm Anal Calorim. 2010;102:23–9.

    Article  CAS  Google Scholar 

  18. Bertol CD, Cruz AP, Stulzer HK, Murakami FS, Silva MAS. Thermal decomposition kinetics and compatibility studies of primaquine under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2010;102:187–92.

    Article  CAS  Google Scholar 

  19. Bayram H, Önal M, Hamza Y, Sarıkaya Y. Thermal analysis of a white calcium bentonite. J Therm Anal Calorim. 2010;101:873–9.

    Article  CAS  Google Scholar 

  20. Cabrales L, Abidi N. On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim. 2010;102:485–91.

    Article  CAS  Google Scholar 

  21. Webster SH, Rice ME, Highman B, Von Oettingen WF. The toxicology of potassium and sodium iodates: acute toxicity in mice. J Pharmacol Exp Ther. 1957;120:171–8.

    CAS  Google Scholar 

  22. Kasatani H, Aoyagi S, Kuroiwa Y, Yagi K, Katayama R, Terauchi H. Study of crystal structure at high temperature phase in KIO3 crystal by synchrotron powder X-ray diffraction. Nucl Instr Methods Phys Res Sect B. 2003;199:49–53.

    Article  CAS  Google Scholar 

  23. Hirase R, Shikata T, Shirai M. Selective formation of polyaniline on wool by chemical polymerization, using potassium iodate. Synth Met. 2004;146:73–7.

    Article  CAS  Google Scholar 

  24. Amr AS, Jabay OA. Effect of salt iodization on the quality of pickled vegetables. J Food Agric Environ. 2004;2:151–6.

    CAS  Google Scholar 

  25. Henson GL, Niemeyer L, Ansong G, Forkner R, Makkar HPS, Hagerman AE. A modified method for determining protein binding capacity of plant polyphenolics using radiolabelled protein. Phytochem Anal. 2004;15:159–63.

    Article  CAS  Google Scholar 

  26. Shibli SMA, Saji VS. Co-inhibition characteristics of sodium tungstate with potassium iodate on mild steel. Corros Sci. 2005;47:2213–24.

    Article  CAS  Google Scholar 

  27. DeLong GR, Leslie PW, Wang S, Jiang X, Zhang M, Rakeman M, Jiang J, Ma T, Cao X. Effect on infant mortality of iodination of irrigation water in a severely iodine-deficient area of China. Lancet. 1997;350:771–3.

    Article  CAS  Google Scholar 

  28. Wang H, Wang J, Xu J, Cai R. Study on the influence of potassium iodate on the metabolism of Escherichia coli by intrinsic fluorescence. Spectrochim Acta A. 2006;64:316–20.

    Article  Google Scholar 

  29. Revanasiddappa HD, Dayananda BP, Kumar TNK. A sensitive spectrophotometric method for the determination of arsenic in environmental samples. Environ Chem Lett. 2007;5:151–5.

    Article  CAS  Google Scholar 

  30. Kargosha K, Ahmadi SH, Zeeb M, Moeinossadat SR. Vapour phase fourier transform infrared spectrometric determination of l-cysteine and l-cystine. Talanta. 2008;74:753–9.

    Article  CAS  Google Scholar 

  31. Themelis DG, Trellopoulos AV, Tzanavaras PD, Sofoniou M. Highly selective flow injection spectrophotometric determination of gold based on its catalytic effect on the oxidation of variamine blue by potassium iodate in aqueous N,N-dimethylformamide medium. Talanta. 2007;72:277–81.

    Article  CAS  Google Scholar 

  32. Suba K, Udupa MR. Solid state reactions in the potassium iodate and molybdenum(VI) oxide system. J Therm Anal Calorim. 1989;35:1191–5.

    Article  CAS  Google Scholar 

  33. Kada T. Radiosensitization by potassium iodate and related compounds. Int J Rad Biol. 1969;15:271–4.

    Article  CAS  Google Scholar 

  34. Xiao DQ, Wang X, Zheng WC, Lu MK. Optical absorption properties of potassium iodate single crystals. Ferroelectrics. 1989;100:213–21.

    Article  CAS  Google Scholar 

  35. Hegde S, Udaya BP, Babu SV. Chemical-mechanical polishing of copper using molybdenum dioxide slurry. J Mater Res. 2005;20:2553–61.

    Article  CAS  Google Scholar 

  36. Cherian T, Narayana B. A new spectrophotometric method for the determination of arsenic in environmental and biological samples. Anal Lett. 2005;38:2207–16.

    Article  CAS  Google Scholar 

  37. Breusov ON, Kashina NJ, Rezvina TV. Thermal decomposition of chlorates, bromates, iodates, perchlorates and periodates of potassium, rubidium and cesium. Zh Neorg Khim. 1970;15:612–4.

    CAS  Google Scholar 

  38. Celis K, Driessche IV, Mouton R, Vanhoyland G, Hoste S. Kinetics of consecutive reactions in the solid state: thermal decomposition of oxalates. Meas Sci Rev. 2001;1:177–80.

    Google Scholar 

  39. Vyazovkin S, Wight CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125–49.

    Article  CAS  Google Scholar 

  40. Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics: I isothermal kinetic studies. Thermochim Acta. 2005;429:93–102.

    Article  CAS  Google Scholar 

  41. Khawam A, Flanagan DR. Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics. J Phy Chem B. 2005;109:10073–80.

    Article  CAS  Google Scholar 

  42. Cai J, Liu R. Kinetic analysis of solid-state reactions: precision of the activation energy obtained from one type of integral methods without neglecting the low temperature end of the temperature integral. Solid state Sci. 2008;10:659–63.

    Article  CAS  Google Scholar 

  43. Raymond CE, Hein WJPN, Delani N. Kinetic analysis of non-isothermal thermogravimetric analyser results using a new method for the evaluation of the temperature integral and multi-heating rates. Fuel. 2006;85:418–22.

    Article  Google Scholar 

  44. Brown ME, Gallagher PK, editors. Handbook of thermal analysis and calorimetry, vol 5: recent advances, techniques and applications. Amsterdam: Elsevier; 2008.

    Google Scholar 

  45. Burnham AK, Dinh LN. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim. 2007;89:479–90.

    Article  CAS  Google Scholar 

  46. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  47. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–7.

    Article  CAS  Google Scholar 

  48. Crissafis K, Paraskevopoulos KM, Bikiaris DN. Thermal degradation kinetics of the biodegradable aliphatic polyester, poly(propylene succinate). Polym Degrad Stab. 2006;91:60–8.

    Article  Google Scholar 

  49. Vyazovkin S. Model-free kinetics staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.

    Article  CAS  Google Scholar 

  50. Solymosi F. Structure and stability of salts of halogen oxyacids in the solid phase. London: Wiley; 1977.

    Google Scholar 

  51. Prout EG, Tompkins FC. The thermal decomposition of potassium permanganate. Trans Faraday Soc. 1944;40:488–97.

    Article  CAS  Google Scholar 

  52. Helg U. KJO3, ein Ferroelektrikum mit nicht umklappbarer, jedoch auslenkbarer Polarisation. Z Kristallogr. 1970;131:241–77.

    Article  CAS  Google Scholar 

  53. Salje E. Physikalische Eigenschaften von KJO3. Z Kristallogr. 1971;134:107–15.

    Article  CAS  Google Scholar 

  54. Naray-Szabo J, Kalman A. On the structure and polymorphism of potassium iodate, KIO3. Acta Crystallogr. 1961;14:791–2.

    Article  CAS  Google Scholar 

  55. Stern KH. High temperature properties and thermal decomposition of inorganic salts with oxy anions. Florida: CRC Press; 2001. p. 240.

    Google Scholar 

  56. Philips BR, Taylor O. Thermal decomposition of potassium metaperiodate. J Chem Soc 1963;5583–5590.

  57. Muraleedharan K, Kannan MP. Effects of dopants on the isothermal decomposition kinetics of potassium metaperiodate. Thermochim Acta. 2000;359:161–8.

    Article  CAS  Google Scholar 

  58. Muraleedharan K, Kannan MP, Gangadevi T. Effect of metal oxide additives on the thermal decomposition kinetics of potassium metaperiodate. J Therm Anal Calorim. 2010;100:177–82.

    Article  CAS  Google Scholar 

  59. Muraleedharan K, Kannan MP, Gangadevi T. Thermal decomposition of potassium metaperiodate doped with trivalent ions. hermochim Acta. 2010;502:24–9.

    Article  CAS  Google Scholar 

  60. Markovitz MM, Boryta DA. The decomposition kinetics of lithium perchlorate. J Phys Chem. 1961;65:1419–24.

    Article  Google Scholar 

  61. Kannan MP, Abdul Mujeeb VM. Effect of dopant ion on the kinetics of thermal decomposition of potassium bromate. React Kinet Catal Lett. 2001;72:245–52.

    Article  CAS  Google Scholar 

  62. Kim S, Kavitha D, Yu TU, Jung JS, Song JH, Lee SW, Kong SH. Using isothermal kinetic results to estimate kinetic triplet of pyrolysis reaction of polypropylene. J Anal Appl Pyro. 2008;81:100–5.

    Article  CAS  Google Scholar 

  63. Huheey JE. Inorganic chemistry principles of structure and reactivity. New York: Harper & Row Publishers; 1983.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to KSCSTE for providing instrumental facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Muraleedharan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muraleedharan, K., Kannan, M.P. & Ganga Devi, T. Thermal decomposition kinetics of potassium iodate. J Therm Anal Calorim 103, 943–955 (2011). https://doi.org/10.1007/s10973-010-1162-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1162-5

Keywords

Navigation