Skip to main content
Log in

Utilising thermoporometry to obtain new insights into nanostructured materials

Review part 1

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermoporometry is a relatively new method of characterising porous properties of nanostructured materials based on observation of solid–liquid phase transitions of materials confined in pores. It provides several advantages over the conventional characterisation methods, mercury porosimetry and gas sorption. The advantages include possibility of using short measurement times, non-toxic chemicals and wet samples. In addition, complicated sample preparation and specialised instruments are not required. Therefore, it has a great potential of becoming a widely utilised characterisation method, although its potential has not yet been widely realised. In recent years, there has been a significant increase in research activities regarding the method. In the first part of the review, we introduce thermoporometry and review related results of the confinement effects on materials and their solid–liquid phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Davis ME. Ordered porous materials for emerging applications. Nature. 2002;417:813–21.

    Article  CAS  Google Scholar 

  2. Ciesla U, Schüth F. Ordered mesoporous materials. Microporous Mesoporous Mater. 1999;27:131–49.

    Article  CAS  Google Scholar 

  3. Taguchi A, Schüth F. Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 2005;77:1–45.

    Article  CAS  Google Scholar 

  4. Parkhutik V. Porous silicon—mechanisms of growth and applications. Solid-State Electron. 1999;43:1121–41.

    Article  CAS  Google Scholar 

  5. Jalkanen T, Torres-Costa V, Salonen J, Bjorkqvist M, Makila E, Martinez-Duart JM, Lehto V. Optical gas sensing properties of thermally hydrocarbonized porous silicon bragg reflectors. Opt Express. 2009;17:5446–56.

    Article  CAS  Google Scholar 

  6. Torres-Costa V, Martín-Palma RJ. Application of nanostructured porous silicon in the field of optics. A review. J Mater Sci. 2010;45:2823–38.

    Article  CAS  Google Scholar 

  7. Salonen J, Kaukonen A, Hirvonen J, Lehto V. Mesoporous silicon in drug delivery applications. J Pharm Sci. 2008;97:632–53.

    Article  CAS  Google Scholar 

  8. Jane A, Dronov R, Hodges A, Voelcker NH. Porous silicon biosensors on the advance. Trends Biotechnol. 2009;27:230–9.

    Article  CAS  Google Scholar 

  9. Salonen J, Laitinen L, Kaukonen A, Tuura J, Björkqvist M, Heikkilä T, Vähä-Heikkilä K, Hirvonen J, Lehto V. Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Control Release. 2005;108:362–74.

    Article  CAS  Google Scholar 

  10. Heikkilä T, Salonen J, Tuura J, Kumar N, Salmi T, Murzin DY, Hamdy MS, Mul G, Laitinen L, Kaukonen A, Hirvonen J, Lehto V. Evaluation of mesoporous TCPSi, MCM-41, SBA-15, and TUD-1 materials as API carriers for oral drug delivery. Drug Deliv. 2007;15:337–47.

    Article  CAS  Google Scholar 

  11. Kilpeläinen M, Riikonen J, Vlasova MA, Huotari A, Lehto V, Salonen J, Herzig KH, Järvinen K. In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles. J Control Release. 2009;137:166–70.

    Article  CAS  Google Scholar 

  12. Canham L. Properties of porous silicon. London: The Institution of Electrical Engineers; 1997.

    Google Scholar 

  13. Zhao DY, Huo QS, Feng JL, Chmelka BF, Stucky GD. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc. 1998;120:6024–36.

    Article  CAS  Google Scholar 

  14. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–2.

    Article  CAS  Google Scholar 

  15. Kleitz F, Liu D, Anilkumar GM, Park I-S, Solovyov LA, Shmakov AN, Ryoo R. Large cage face-centered-cubic Fm3m mesoporous silica: synthesis and structure. J Phys Chem B. 2003;107:14296–300.

    Article  CAS  Google Scholar 

  16. Endo A, Yamada M, Kataoka S, Sano T, Inagi Y, Miyaki A. Direct observation of surface structure of mesoporous silica with low acceleration voltage FE-SEM. Colloids Surf A. 2010;357:11–6.

    Article  CAS  Google Scholar 

  17. Che SN, Lund K, Tatsumi T, Iijima S, Joo SH, Ryoo R, Terasaki O. Direct observation of 3D mesoporous structure by scanning electron microscopy (SEM): SBA-15 silica and CMK-5 carbon. Angew Chem Int Ed Engl. 2003;42:2182–5.

    Article  CAS  Google Scholar 

  18. Thiruvengadathan R, Levi-Kalisman Y, Regev O. Templating nanostructures by mesoporous materials with an emphasis on room temperature and cryogenic TEM studies. Curr Opin Colloid Interface Sci. 2005;10:280–6.

    Article  CAS  Google Scholar 

  19. Van Brakel J, Modrý S, Svatá M. Mercury porosimetry: state of the art. Powder Technol. 1981;29:1–12.

    Article  Google Scholar 

  20. Léon Y, León CA. New perspectives in mercury porosimetry. Adv Colloid Interface Sci. 1998;76–77:341–72.

    Article  Google Scholar 

  21. Porcheron F, Monson PA, Thommes M. Modeling mercury porosimetry using statistical mechanics. Langmuir. 2004;20:6482–9.

    Article  CAS  Google Scholar 

  22. Johnson RW, Abrams L, Maynard RB, Amick TJ. Use of mercury porosimetry to characterize pore structure and model end-use properties of coated papers. Part I: optical and strength properties. Tappi J. 1999;82:239–51.

    CAS  Google Scholar 

  23. Wikberg M, Alderborn G. Compression characteristics of granulated materials. VI: pore size distributions, assessed by mercury penetration, of compacts of two lactose granulations with different fragmentation propensities. Int J Pharm. 1992;84:191–5.

    Article  CAS  Google Scholar 

  24. Cook RA, Hover KC. Mercury porosimetry of hardened cement pastes. Cem Concr Res. 1999;29:933–43.

    Article  CAS  Google Scholar 

  25. Denoyel R, Llewellyn P, Beurroies I, Rouquerol J, Rouquerol FO, Luciani L. Comparing the basic phenomena involved in three methods of pore-size characterization: gas adsorption, liquid intrusion and thermoporometry. Part Part Syst Charact. 2004;21:128.

    Article  Google Scholar 

  26. Sing K. The use of nitrogen adsorption for the characterisation of porous materials. Colloids Surf A. 2001;187-188:3–9.

    Article  CAS  Google Scholar 

  27. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–19.

    Article  CAS  Google Scholar 

  28. Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. 1. Computations from nitrogen isotherms. J Am Chem Soc. 1951;73:373–80.

    Article  CAS  Google Scholar 

  29. Thommes M, Köhn R, Früba M. Sorption and pore condensation behavior of nitrogen, argon, and krypton in mesoporous MCM-48 silica materials. J Phys Chem B. 2000;104:7932–43.

    Article  CAS  Google Scholar 

  30. Kruk M, Jaroniec M. Gas adsorption characterization of ordered organic–inorganic nanocomposite materials. Chem Mater. 2001;13:3169–83.

    Article  CAS  Google Scholar 

  31. Tarazona P, Marconi UMB, Evans R. Phase-equilibria of fluid interfaces and confined fluids—nonlocal versus local density functionals. Mol Phys. 1987;60:573–95.

    Article  CAS  Google Scholar 

  32. Neimark AV, Ravikovitch PI. Capillary condensation in MMS and pore structure characterization. Microporous Mesoporous Mater. 2001;44–45:697–707.

    Article  Google Scholar 

  33. Seaton NA. Determination of the connectivity of porous solids from nitrogen sorption measurements. Chem Eng Sci. 1991;46:1895–909.

    Article  CAS  Google Scholar 

  34. Morishige K, Tateishi N. Adsorption hysteresis in ink-bottle pore. J Chem Phys. 2003;119:2301–6.

    Article  CAS  Google Scholar 

  35. Morishige K. Adsorption hysteresis in ordered mesoporous silicas. Adsorption. 2008;14:157–63.

    Article  CAS  Google Scholar 

  36. Liu H, Zhang L, Seaton NA. Sorption hysteresis as a probe of pore structure. Langmuir. 1993;9:2576–82.

    Article  CAS  Google Scholar 

  37. Groen JC, Peffer LAA, Pérez-Ramírez J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 2003;60:1–17.

    Article  CAS  Google Scholar 

  38. Brun M, Lallemand A, Quinson J, Eyraud C. A new method for simultaneous determination of size and shape of pores: the thermoporometry. Thermochim Acta. 1977;21:59–88.

    Article  CAS  Google Scholar 

  39. Findenegg GH, Jaehnert S, Akcakayiran D, Schreiber A. Freezing and melting of water confined in silica nanopores. ChemPhysChem. 2008;9:2651–9.

    Article  CAS  Google Scholar 

  40. Morishige K, Yasunaga H, Matsutani Y. Effect of pore shape on freezing and melting temperatures of water. J Phys Chem C. 2010;114:4028–35.

    Article  CAS  Google Scholar 

  41. Beurroies I, Denoyel R, Llewellyn P, Rouquerol J. A comparison between melting-solidification and capillary condensation hysteresis in mesoporous materials: application to the interpretation of thermoporometry data. Thermochim Acta. 2004;421:11–8.

    Article  CAS  Google Scholar 

  42. Morishige K, Yasunaga H, Denoyel R, Wernert V. Pore-blocking-controlled freezing of water in cagelike pores of KIT-5. J Phys Chem C. 2007;111:9488–95.

    Article  CAS  Google Scholar 

  43. Riikonen J, Salonen J, Kemell M, Kumar N, Murzin DY, Ritala M, Lehto V. A novel method of quantifying the u-shaped pores in SBA-15. J Phys Chem C. 2009;113:20349–54.

    Article  CAS  Google Scholar 

  44. Sun Z, Scherer GW. Pore size and shape in mortar by thermoporometry. Cem Concr Res. 2010;40:740–51.

    Article  CAS  Google Scholar 

  45. Fathima NN, Kumar MP, Rao JR, Nair BU. A DSC investigation on the changes in pore structure of skin during leather processing. Thermochim Acta. 2010;501:98–102.

    Article  CAS  Google Scholar 

  46. Chan AW, Neufeld RJ. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials. Biomaterials. 2009;30:6119–29.

    Article  CAS  Google Scholar 

  47. Luukkonen P, Maloney T, Rantanen J, Paulapuro H, Yliruusi J. Microcrystalline cellulose–water interaction—a novel approach using thermoporosimetry. Pharm Res. 2001;18:1562–9.

    Article  CAS  Google Scholar 

  48. Ksiązczak A, Gołofit T, Tomaszewski W. Binary system nitrocellulose from linters + sym-diethyldiphenylurea: thermal analysis of phase transition and pore structure. J Therm Anal Calorim. 2008;91:375–80.

    Article  CAS  Google Scholar 

  49. Webber JBW. Studies of nano-structured liquids in confined geometries and at surfaces. Prog Nucl Magn Reson Spectrosc. 2010;56:78–93.

    Article  CAS  Google Scholar 

  50. Petrov OV, Furó I. NMR cryoporometry: principles, applications and potential. Prog Nucl Magn Reson Spectrosc. 2009;54:97–122.

    Article  CAS  Google Scholar 

  51. Mitchell J, Webber JBW, Strange JH. Nuclear magnetic resonance cryoporometry. Phys Rep. 2008;461:1–36.

    Article  CAS  Google Scholar 

  52. Morishige K, Nobuoka K. X-ray diffraction studies of freezing and melting of water confined in a mesoporous adsorbent (MCM-41). J Chem Phys. 1997;107:6965–9.

    Article  CAS  Google Scholar 

  53. Morishige K, Iwasaki H. X-ray study of freezing and melting of water confined within SBA-15. Langmuir. 2003;19:2808–11.

    Article  CAS  Google Scholar 

  54. Liu E, Dore JC, Webber JBW, Khushalani D, Jähnert S, Findenegg GH, Hansen T. Neutron diffraction and NMR relaxation studies of structural variation and phase transformations for water/ice in SBA-15 silica. I: the over-filled case. J Phys. 2006;18:10009–28.

    CAS  Google Scholar 

  55. Jelassi J, Castricum HL, Bellissent-Funel M-, Dore J, Webber JBW, Sridi-Dorbez R. Studies of water and ice in hydrophilic and hydrophobic mesoporous silicas: pore characterisation and phase transformations. Phys Chem Chem Phys. 2010;12:2838–49.

    Article  CAS  Google Scholar 

  56. Banys J, Kinka M, MacUtkevic J, Völkel G, Böhlmann W, Umamaheswari V, Hartmann M, Pöppl A. Broadband dielectric spectroscopy of water confined in MCM-41 molecular sieve materials—low-temperature freezing phenomena. J Phys. 2005;17:2843–57.

    CAS  Google Scholar 

  57. Sliwinska-Bartkowiak M, Dudziak G, Sikorski R, Gras R, Radhakrishnan R, Gubbins KE. Melting/freezing behavior of a fluid confined in porous glasses and MCM-41: dielectric spectroscopy and molecular simulation. J Chem Phys. 2001;114:950–62.

    Article  CAS  Google Scholar 

  58. Petrov OV, Furó I. A joint use of melting and freezing data in NMR cryoporometry. Microporous Mesoporous Mater. 2010;136:83–91.

    Article  CAS  Google Scholar 

  59. Telkki V-V, Lounila J, Jokisaari J. Behavior of acetonitrile confined to mesoporous silica gels as studied by129Xe NMR: a novel method for determining the pore sizes. J Phys Chem B. 2005;109:757–63.

    Article  CAS  Google Scholar 

  60. Watson AT, Chang CTP. Characterizing porous media with NMR methods. Prog Nucl Magn Reson Spectrosc. 1997;31:343–86.

    Article  CAS  Google Scholar 

  61. Barrie PJ, Klinowski J. 129Xe NMR as a probe for the study of microporous solids: a critical review. Prog Nucl Magn Reson Spectrosc. 1992;24:91–108.

    Article  CAS  Google Scholar 

  62. Perkins EL, Lowe JP, Edler KJ, Tanko N, Rigby SP. Determination of the percolation properties and pore connectivity for mesoporous solids using NMR cryodiffusometry. Chem Eng Sci. 2008;63:1929–40.

    Article  CAS  Google Scholar 

  63. Hwang DW, Chu C-C, Sinha AK, Hwang L-P. Dynamics of supercooled water in various mesopore sizes. J Chem Phys. 2007;126:044702.

    Google Scholar 

  64. Gun’ko VM, Turov VV, Bogatyrev VM, Zarko VI, Leboda R, Goncharuk EV, Novza AA, Turov AV, Chuiko AA. Unusual properties of water at hydrophilic/hydrophobic interfaces. Adv Colloid Interface Sci. 2005;118:125–72.

    Google Scholar 

  65. Sklari S, Rahiala H, Stathopoulos V, Rosenholm J, Pomonis P. The influence of surface acid density on the freezing behavior of water confined in mesoporous MCM-41 solids. Microporous Mesoporous Mater. 2001;49:1–13.

    Article  CAS  Google Scholar 

  66. Strange JH, Webber JBW. Spatially resolved pore size distributions by NMR. Meas Sci Technol. 1997;8:555–61.

    Article  CAS  Google Scholar 

  67. Jähnert S, Vaca Chávez F, Schaumann GE, Schreiber A, Schönhoff M, Findenegg GH. Melting and freezing of water in cylindrical silica nanopores. Phys Chem Chem Phys. 2008;10:6039–51.

    Article  CAS  Google Scholar 

  68. Landry MR. Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim Acta. 2005;433:27.

    Article  CAS  Google Scholar 

  69. Ishikiriyama K, Todoki M, Motomura K. Pore-size distribution (PSD) measurements of silica-gels by means of differential scanning calorimetry. I: optimization for determination of PSD. J Colloid Interface Sci. 1995;171:92.

    Article  CAS  Google Scholar 

  70. Faivre C, Bellet D, Dolino G. Phase transitions of fluids confined in porous silicon: a differential calorimetry investigation. Eur Phys J B. 1999;7:19–36.

    Article  CAS  Google Scholar 

  71. Baba M, Gardette J-, Lacoste J. Crosslinking on ageing of elastomers. II. Comparison of solvent freezing point depression and conventional crosslinking evaluation. Polym Degrad Stab. 1999;65:415–20.

    Article  CAS  Google Scholar 

  72. Baba M, Nedelec J-, Lacoste J, Gardette J-, Morel M. Crosslinking of elastomers resulting from ageing: use of thermoporosimetry to characterise the polymeric network with n-heptane as condensate. Polym Degrad Stab. 2003;80:305–13.

    Article  CAS  Google Scholar 

  73. Schreiber A, Ketelsen I, Findenegg GH. Melting and freezing of water in ordered mesoporous silica materials. Phys Chem Chem Phys. 2001;3:1185.

    Article  CAS  Google Scholar 

  74. Kloetstra KR, Zandbergen HW, van Koten MA, van Bekkum H. Thermoporometry as a new tool in analyzing mesoporous MCM-41 materials. Catal Lett. 1995;33:145.

    Article  CAS  Google Scholar 

  75. Yamamoto T, Endo A, Inagi Y, Ohmori T, Nakaiwa M. Evaluation of thermoporometry for characterization of mesoporous materials. J Colloid Interface Sci. 2005;284:614.

    Article  CAS  Google Scholar 

  76. Ishikiriyama K, Todoki M. Pore-size distribution measurements of silica-gels by means of differential scanning calorimetry. II. Thermoporosimetry. J Colloid Interface Sci. 1995;171:103–11.

    Article  CAS  Google Scholar 

  77. Wulff M. Pore size determination by thermoporometry using acetonitrile. Thermochim Acta. 2004;419:291–4.

    Article  CAS  Google Scholar 

  78. Bahloul N, Baba M, Nedelec J-M. Universal behavior of linear alkanes in a confined medium: toward a calibrationless use of thermoporometry. J Phys Chem B. 2005;109:16227–9.

    Article  CAS  Google Scholar 

  79. Baba M, Nedelec J-M, Lacoste J, Gardette J-L. Calibration of cyclohexane solid–solid phase transition thermoporosimetry and application to the study of crosslinking of elastomers upon aging. J Non-Cryst Solids. 2003;315:228–38.

    Article  CAS  Google Scholar 

  80. Takei T, Onoda Y, Fuji M, Watanabe T, Chikazawa M. Anomalous phase transition behavior of carbon tetrachloride in silica pores. Thermochim Acta. 2000;352–353:199–204.

    Article  Google Scholar 

  81. Husár B, Commereuc S, Lukáč I, Chmela Š, Nedelec JM, Baba M. Carbon tetrachloride as a thermoporometry liquid probe to study the cross-linking of styrene copolymer networks. J Phys Chem B. 2006;110:5315–20.

    Article  CAS  Google Scholar 

  82. Meziane A, Grolier J-E, Baba M, Nedelec J-. Crystallization of carbon tetrachloride in confined geometries. Faraday Discuss. 2007;136:383–94.

    Article  CAS  Google Scholar 

  83. Nedelec J-M, Grolier J-E, Baba M. Thermoporosimetry: a powerful tool to study the cross-linking in gels networks. J Sol Gel Sci Technol. 2006;40:191–200.

    Article  CAS  Google Scholar 

  84. Unruh KM, Huber TE, Huber CA. Melting and freezing behavior of indium metal in porous glasses. Phys Rev B. 1993;48:9021–7.

    Article  CAS  Google Scholar 

  85. Johari GP. Water’s character from dielectric relaxation above its T g. J Chem Phys. 1996;105:7079–82.

    Article  CAS  Google Scholar 

  86. Mishima O, Stanley HE. The relationship between liquid, supercooled and glassy water. Nature. 1998;396:329–35.

    Article  CAS  Google Scholar 

  87. Debenedetti PG. Supercooled and glassy water. J Phys. 2003;15:R1669–726.

    Google Scholar 

  88. Gane PAC, Ridgway CJ, Lehtinen E, Valiullin R, Furó I, Schoelkopf J, Paulapuro H, Daicic J. Comparison of NMR cryoporometry, mercury intrusion porosimetry, and DSC thermoporosimetry in characterizing pore size distributions of compressed finely ground calcium carbonate structures. Ind Eng Chem Res. 2004;43:7920–7.

    Article  CAS  Google Scholar 

  89. Barrande M, Beurroies I, Denoyel R, Tatárová I, Gramblička M, Polakovič M, Joehnck M, Schulte M. Characterisation of porous materials for bioseparation. J Chromatogr A. 2009;1216:6906–16.

    Article  CAS  Google Scholar 

  90. Overloop K, Vangerven L. Exchange and cross-relaxation in adsorbed water. J Magn Reson. 1993;101:147–56.

    Article  CAS  Google Scholar 

  91. Overloop K, van Gerven L. NMR relaxation in adsorbed water. J Magn Reson. 1992;100:303–15.

    CAS  Google Scholar 

  92. Takahara S, Nakano M, Kittaka S, Kuroda Y, Mori T, Hamano H, Yamaguchi T. Neutron scattering study on dynamics of water molecules in MCM-41. J Phys Chem B. 1999;103:5814–9.

    Article  CAS  Google Scholar 

  93. Hwang DW, Sinha AK, Cheng C-Y, Yu T-Y, Hwang L-P. Water dynamics on the surface of MCM-41 via 2H double quantum filtered NMR and relaxation measurements. J Phys Chem B. 2001;105:5713–21.

    Article  CAS  Google Scholar 

  94. Frunza L, Kosslick H, Pitsch I, Frunza S, Schönhals A. Rotational fluctuations of water inside the nanopores of SBA-type molecular sieves. J Phys Chem B. 2005;109:9154–9.

    Article  CAS  Google Scholar 

  95. Takamuku T, Yamagami M, Wakita H, Masuda Y, Yamaguchi T. Thermal property, structure, and dynamics of supercooled water in porous silica by calorimetry, neutron scattering, and NMR relaxation. J Phys Chem B. 1997;101:5730–9.

    Article  CAS  Google Scholar 

  96. Riikonen J, Salonen J, Lehto V. Utilising thermoporometry to obtain new insights into nanostructured materials—review part 2. J Therm Anal Calorim. 2010.

  97. Pellenq RJ-, Coasne B, Denoyel RO, Coussy O. Simple phenomenological model for phase transitions in confined geometry. 2. Capillary condensation/evaporation in cylindrical mesopores. Langmuir. 2009;25:1393–402.

    Article  CAS  Google Scholar 

  98. Petrov O, Furó I. Curvature-dependent metastability of the solid phase and the freezing–melting hysteresis in pores. Phys Rev E. 2006;73:011608-1–7.

    Google Scholar 

  99. Moore EB, De La Llave E, Welke K, Scherlis DA, Molinero V. Freezing, melting and structure of ice in a hydrophilic nanopore. Phys Chem Chem Phys. 2010;12:4124–34.

    Article  CAS  Google Scholar 

  100. Turov VV, Mironyuk IF. Adsorption layers of water on the surface of hydrophilic, hydrophobic and mixed silicas. Colloids Surf A. 1998;134:257–63.

    Article  CAS  Google Scholar 

  101. Turov VV, Leboda R. Application of 1H NMR spectroscopy method for determination of characteristics of thin layers of water adsorbed on the surface of dispersed and porous adsorbents. Adv Colloid Interface Sci. 1999;79:173–211.

    Article  CAS  Google Scholar 

  102. Riikonen J, Mäkilä E, Salonen J, Lehto V. Determination of physical state of drug molecules in mesoporous silicon with different surface chemistries. Langmuir. 2009;25:6137–42.

    Article  CAS  Google Scholar 

  103. Hansen EW, Stöcker M, Schmidt R. Low-temperature phase transition of water confined in mesopores probed by NMR. Influence on pore size distribution. J Phys Chem. 1996;100:2195–200.

    Article  CAS  Google Scholar 

  104. Endo A, Yamamoto T, Inagi Y, Wakabe K, Ohmori T. Characterization of nonfreezable pore water in mesoporous silica by thermoporometry. J Phys Chem C. 2008;112:9034–9.

    Article  CAS  Google Scholar 

  105. Wallacher D, Knorr K. Melting and freezing of ar in nanopores. Phys Rev B. 2001;63:104202.

    Article  CAS  Google Scholar 

  106. Amanuel S, Bauer H, Bonventre P, Lasher D. Nonfreezing interfacial layers of cyclohexane in nanoporous silica. J Phys Chem C. 2009;113:18983–6.

    Article  CAS  Google Scholar 

  107. Petrov OV, Vargas-Florencia D, Furó I. Surface melting of octamethylcyclotetrasiloxane confined in controlled pore glasses: curvature effects observed by 1NMR. J Phys Chem B. 2007;111:1574–81.

    Article  CAS  Google Scholar 

  108. Morishige K, Uematsu H. The proper structure of cubic ice confined in mesopores. J Chem Phys. 2005;122:1–4.

    Article  CAS  Google Scholar 

  109. Steytler DC, Dore JC, Wright CJ. Neutron diffraction study of cubic ice nucleation in a porous silica network. J Phys Chem. 1983;87:2458–9.

    Article  CAS  Google Scholar 

  110. Bellissent-Funel M-C, Lal J, Bosio L. Structural study of water confined in porous glass by neutron scattering. J Chem Phys. 1993;98:4246–52.

    Article  CAS  Google Scholar 

  111. Mayer E, Hallbrucker A. Cubic ice from liquid water. Nature. 1987;325:601–2.

    Article  CAS  Google Scholar 

  112. Morishige K, Yasunaga H, Uematsu H. Stability of cubic ice in mesopores. J Phys Chem C. 2009;113:3056–61.

    Article  CAS  Google Scholar 

  113. Bertie JE, Jacobs SM. Far-infrared absorption by ices ih and ic at 4.3°K and the powder diffraction pattern of ice ic. J Chem Phys. 1977;67:2445–8.

    Article  CAS  Google Scholar 

  114. Brown DW, Sokol PE, Ehrlich SN. New disorder induced phase transitions of classical rare gases in porous vycor glass. Phys Rev Lett. 1998;81:1019–22.

    Article  CAS  Google Scholar 

  115. Schäfer B, Balszunat D, Langel W, Asmussen B. Contrast X-ray powder diffraction of solid rare gas nanocrystals in silica gel mesopores. Mol Phys. 1996;89:1057–70.

    Article  Google Scholar 

  116. Huber P, Knorr K. Adsorption-desorption isotherms and X-ray diffraction of ar condensed into a porous glass matrix. Phys Rev B. 1999;60:12657–65.

    Article  CAS  Google Scholar 

  117. Christenson HK. Confinement effects on freezing and melting. J Phys. 2001;13:R95–133.

    Google Scholar 

  118. Lee MK, Tien C, Charnaya EV, Sheu H-S, Kumzerov YA. Structural variations in nanosized confined gallium. Phys Lett A. 2010;374:1570–3.

    Article  CAS  Google Scholar 

  119. Ha JM, Hamilton BD, Hillmyer MA, Ward MD. Phase behavior and polymorphism of organic crystals confined within nanoscale chambers. Cryst Growth Des. 2009;9:4766–77.

    Article  CAS  Google Scholar 

  120. Huber P, Wallacher D, Albers J, Knorr K. Quenching of lamellar ordering in an n-alkane embedded in nanopores. Europhys Lett. 2004;65:351–7.

    Article  CAS  Google Scholar 

  121. Henschel A, Hofmann T, Huber P, Knorr K. Preferred orientations and stability of medium length n-alkanes solidified in mesoporous silicon. Phys Rev E. 2007;75:021607.

    Google Scholar 

  122. Denoyel R, Pellenq RJM. Simple phenomenological models for phase transitions in a confined geometry. 1. Melting and solidification in a cylindrical pore. Langmuir. 2002;18:2710–6.

    Article  CAS  Google Scholar 

  123. Tombari E, Ferrari C, Salvetti G, Johari GP. Dynamic and apparent specific heats during transformation of water in partly filled nanopores during slow cooling to 110 K and heating. Thermochim Acta. 2009;492:37–44.

    Article  CAS  Google Scholar 

  124. Radhakrishnan R, Gubbins KE, Watanabe A, Kaneko K. Freezing of simple fluids in microporous activated carbon fibers: comparison of simulation and experiment. J Chem Phys. 1999;111:9058–67.

    Article  CAS  Google Scholar 

  125. Zhang D, Tian S, Xiao D. Experimental study on the phase change behavior of phase change material confined in pores. Sol Energy. 2007;81:653–60.

    Article  CAS  Google Scholar 

  126. Radhakrishnan R, Gubbins KE. Free energy studies of freezing in slit pores: an order-parameter approach using Monte Carlo simulation. Mol Phys. 1999;96:1249–67.

    Article  CAS  Google Scholar 

  127. Maheshwari P, Dutta D, Sharma SK, Sudarshan K, Pujari PK, Majumder M, Pahari B, Bandyopadhyay B, Ghoshray K, Ghoshray A. Effect of interfacial hydrogen bonding on the freezing/melting behavior of nanoconfined liquids. J Phys Chem C. 2010;114:4966–72.

    Article  CAS  Google Scholar 

  128. Coasne B, Czwartos J, Sliwinska-Bartkowiak M, Gubbins KE. Effect of pressure on the freezing of pure fluids and mixtures confined in nanopores. J Phys Chem B. 2009;113:13874–81.

    Article  CAS  Google Scholar 

  129. Alcoutlabi M, McKenna GB. Effects of confinement on material behaviour at the nanometre size scale. J Phys. 2005;17:R461–524.

    CAS  Google Scholar 

  130. Awschalom DD, Warnock J. Supercooled liquids and solids in porous glass. Phys Rev B. 1987;35:6779–85.

    Article  CAS  Google Scholar 

  131. Mu R, Malhotra VM. Effects of surface and physical confinement on the phase transitions of cyclohexane in porous silica. Phys Rev B. 1991;44:4296–303.

    Article  CAS  Google Scholar 

  132. Morishige K, Kawano K. Freezing and melting of water in a single cylindrical pore: the pore-size dependence of freezing and melting behavior. J Chem Phys. 1999;110:4867–72.

    Article  CAS  Google Scholar 

  133. Kondrashova D, Reichenbach C, Valiullin R. Probing pore connectivity in random porous materials by scanning freezing and melting experiments. Langmuir. 2010;26:6380–5.

    Article  CAS  Google Scholar 

  134. Dvoyashkin M, Khokhlov A, Valiullin R, Kärger J. Freezing of fluids in disordered mesopores. J Chem Phys 2008;129:154702–6.

    Google Scholar 

  135. Dore J. Structural studies of water in confined geometry by neutron diffraction. Chem Phys. 2000;258:327–47.

    Article  CAS  Google Scholar 

  136. Tanaka H. A new scenario of the apparent fragile-to-strong transition in tetrahedral liquids: water as an example. J Phys. 2003;15:L703–11.

    Google Scholar 

  137. Mallamace F, Broccio M, Corsaro C, Faraone A, Majolino D, Venuti V, Liu L, Mou C-Y, Chen S-H. Evidence of the existence of the low-density liquid phase in supercooled, confined water. Proc Natl Acad Sci USA. 2007;104:424–8.

    Article  CAS  Google Scholar 

  138. Mallamace F, Branca C, Broccio M, Corsaro C, Mou C-Y, Chen S-H. The anomalous behavior of the density of water in the range 30 K < T < 373 K. Proc Natl Acad Sci USA. 2007;104:18387–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the Academy of Finland (grant no. 118002 and 122314) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesa-Pekka Lehto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riikonen, J., Salonen, J. & Lehto, VP. Utilising thermoporometry to obtain new insights into nanostructured materials. J Therm Anal Calorim 105, 811–821 (2011). https://doi.org/10.1007/s10973-010-1167-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1167-0

Keywords

Navigation