Skip to main content
Log in

Synthesis and characterization of Co0.8Zn0.2Fe2O4 nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Cobalt zinc ferrite, Co0.8Zn0.2Fe2O4, nanoparticles have been synthesized via autocatalytic decomposition of the precursor, cobalt zinc ferrous fumarato hydrazinate. The X-ray powder diffraction of the ‘as prepared’ oxide confirms the formation of single phase nanocrystalline cobalt zinc ferrite nanoparticles. The thermal decomposition of the precursor has been studied by isothermal, thermogravimetric and differential thermal analysis. The precursor has also been characterized by FTIR, and chemical analysis and its chemical composition has been determined as Co0.8Zn0.2Fe2(C4H2O4)3·6N2H4. The Curie temperature of the ‘as-prepared oxide’ was determined by AC susceptibility measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gawas UB, Mojumdar SC, Verenkar VMS. Ni0.5Mn0.1Zn0.4Fe2(C4H2O4)3·6N2H4 precursor and Ni0.5Mn0.1Zn0.4Fe2O4 nanoparticle: preparation, IR spectral, XRD, SEM-EDS and thermal analysis. J Therm Anal Calorim. 2009;96:49–52.

    Article  CAS  Google Scholar 

  2. Hochepied JF, Pileni MP. Ferromagnetic resonance of nonstoichiometric zinc ferrite and cobalt-doped zinc ferrite nanoparticles. J Mag Mag Mater. 2001;231:45–52.

    Article  CAS  Google Scholar 

  3. Arulmurugan R, Jeyadevan B, Vaidyanathan G, Sendhilnathan S. Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation. J Mag Mag Mater. 2005;288:470–7.

    Article  CAS  Google Scholar 

  4. Kim CK, Lee LH, Katoh S, Murakami R, Yoshimura M. Synthesis of Co-, Co–Zn and Ni–Zn ferrite powders by the microwave-hydrothermal method. Mater Res Bull. 2001;36:2241–50.

    Article  CAS  Google Scholar 

  5. Gul IH, Maqsood A. Influence of Zn–Zr ions on physical and magnetic properties of co-precipitated cobalt ferrite nanoparticles. J Mag Mag Mater. 2007;316:13–8.

    Article  CAS  Google Scholar 

  6. Srinivasan G, Hayes R, Devreugd CP, Laletsin VM, Paddubnaya N. Dynamic magnetoelectric effects in bulk and layered composite of cobalt zinc ferrite and lead zirconate titanate. Appl Phys A. 2005;80:891–7.

    Article  CAS  Google Scholar 

  7. Ramana Reddy AV, Ranga Mohan G, Ravinder D. High-frequency dielectric behaviour of polycrystalline zinc substituted cobalt ferrites. J Mater Sci. 1999;34:3169–76.

    Article  Google Scholar 

  8. Duong GV, Turtelli Sato R, Hanh N, Linh DV, Reissner M, Michor H, Fidler J, Wiesinger G, Grossinger R. Magnetic properties of nanocrystalline Co1−xZnxFe2O4 prepared by forced hydrolysis method. J Mag Mag Mater. 2006;307:313–7.

    Article  CAS  Google Scholar 

  9. Abd El-Ati MI. Dependence of electrical conductivity and tawfik coefficient on the soaking time of Co0.6 Zn0.4Fe2O4 ferrite. Phase Trans. 1994;50:193–8.

    Article  Google Scholar 

  10. Tawfik A, Hamada IM, Hemeda OM. Effect of laser irradiation on the structure and electromechanical properties of Co–Zn ferrite. J Mag Mag Mater. 2002;250:77–82.

    Article  CAS  Google Scholar 

  11. Tawfik A. Electromechanical and pyroelectric properties in CoZn ferrite transducer. J Mag Mag Mater. 2002;248:332–5.

    Article  CAS  Google Scholar 

  12. Josyulu OS, Sobhanadri J. DC conductivity and dielectric behaviour of cobalt–zinc ferrites. Phys Stat Sol (a). 1980;59:323–9.

    Article  CAS  Google Scholar 

  13. Porob RA, Khan SZ, Mojumdar SC, Verenkar VMS. Synthesis, TG, SDC and infrared spectral study of NiMn2(C4H4O4)3·6N2H4—a precursor for NiMn2O4 nanoparticles. J Therm Anal Calorim. 2006;86:605–8.

    Article  CAS  Google Scholar 

  14. Gonsalves LR, Mojumdar SC, Verenkar VMS. Synthesis of cobalt nickel ferrite nanoparticles via autocatalytic decomposition of the precursor. J Therm Anal Calorim. 2010;100:789–92.

    Article  CAS  Google Scholar 

  15. Sawant SY, Verenkar VMS, Mojumdar SC. Preparation, thermal, XRD, chemical and FTIR spectral analysis of NiMn204 nanoparticles and respective precursor. J Therm Anal Calorim. 2007;90:669–72.

    Article  CAS  Google Scholar 

  16. More A, Verenkar VMS, Mojumdar SC. Nickel ferrite nanoparticle synthesis from novel fumarato-hydrazinate precursor. J Therm Anal Calorim. 2008;94(1):63–7.

    Article  CAS  Google Scholar 

  17. Gonsalves LR, Verenkar VMS, Mojumdar SC. Preparation and characterization of Co0.5Zn0.5Fe2 (C4H2O4)3·6N2H4: a precursor to prepare Co0.5Zn0.5Fe2O4 nanoparticles. J Therm Anal Calorim. 2009;96:53–7.

    Article  CAS  Google Scholar 

  18. Gawas UB, Mojumdar SC, Verenkar VMS. Ni0.5Mn0.1Zn0.4Fe2(C4H2O4)3·6N2H4 precursor and Ni0.5Mn0.1Zn0.4Fe2O4 nanoparticle: preparation, IR spectral, XRD, SEM-EDS and thermal analysis. J Therm Anal Calorim. 2009;96:49–52.

    Article  CAS  Google Scholar 

  19. More A, Mojumdar SC, Parab S, Verenkar VMS: Preparation, purification and characterization of nanoparticle ferrite from novel fumarato-hydrazinate precursor. In: 15th CTAS Annual Workshop and Exhibition, 17–18 May 2005, National Research Council Canada, Bouchervile, Quebec J4B 6Y4, Canada, 2005;15:22.

  20. Sawant SY, Kannan KR, Verenkar VMS. In: Pillai CGS, Ramakumar KL, Ravindran PV, Venugopal V, editors. Proceedings of the 13th National Symposium on Thermal Analysis, B.A.R.C. Mumbai: Indian Thermal Analysis Society; 2002. p. 154.

  21. Gawas UB, Mojumdar SC, Verenkar VMS. Synthesis, characterization, infrared studies and thermal analysis of Mn0.6Zn0.4Fe2(C4H2O4)3·6N2H4 and its decomposition product Mn0.6Zn0.4Fe2O4. J Therm Anal Calorim. 2010;100:867–71.

    Article  CAS  Google Scholar 

  22. Rane KS, Verenkar VMS, Sawant PY. Hydrazine method of synthesis of γ-Fe2O3 useful in ferrites preparation. Part IV ± preparation and characterization of magnesium ferrite, MgFe2O4 from γ-Fe2O3 obtained from hydrazinated iron oxyhydroxides and iron (II) carboxylato hydrazinates. J Mater Sci Mater Elect. 1999;10:133–40.

    Article  CAS  Google Scholar 

  23. Jeffery GH, Bassett J, Mendham J and Denney RC. Vogel’s text book of quantitative inorganic analysis. 5th ed. England: Longman; 1989.

  24. Likhite SD, Radhakrishnamurthy C. Initial susceptibility and constricted Rayleigh loops of some basalts. Curr Sci. 1966;35:534–6.

    CAS  Google Scholar 

  25. Gul IH, Abbasi AZ, Amin F, Anis-ur-Rehman M, Maqsood A. Structural, magnetic and electrical properties of Co1−xZnxFe2O4 synthesized by co-precipitation method. J Mag Mag Mater. 2007;311:494–9.

    Article  CAS  Google Scholar 

  26. Li W, Li F-S. Structural and magnetic properties of Co1−x Zn x Fe2O4 nanoparticles. Chinese Phys B. 2008;17:1858–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Mojumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonsalves, L.R., Mojumdar, S.C. & Verenkar, V.M.S. Synthesis and characterization of Co0.8Zn0.2Fe2O4 nanoparticles. J Therm Anal Calorim 104, 869–873 (2011). https://doi.org/10.1007/s10973-011-1298-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1298-y

Keywords

Navigation