Skip to main content
Log in

Insulating behavior of metakaolin-based geopolymer materials assess with heat flux meter and laser flash techniques

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermo physical behavior of metakaolin-based geopolymer materials was investigated. Five compositions of geopolymers were prepared with Si/Al from 1.23 to 2.42 using mix of sodium and potassium hydroxide (~7.5 M) as well as sodium silicate as activator. The products obtained were characterized after complete curing to constant weight at room temperature. The thermal diffusivity (2.5–4.5 × 10−7m2/s) and thermal conductivity (0.30–0.59 W/m K) were compared to that of existing insulating structural materials. The correlation between the thermal conductivity and parameters as porosity, pore size distribution, matrix strengthening, and microstructure was complex to define. However, the structure of the geopolymer matrix, typical porous amorphous network force conduction heat flux to travel through very tortuous routes consisting of a multiple of neighboring polysialate particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bauer TH. A general analytical approach toward the thermal conductivity of porous media. Int J Heat Transf. 1993;36:4181–91.

    Article  CAS  Google Scholar 

  2. Woodside W, Messmer JM. Thermal conductivity of porous media. J Appl Phys. 1961;32(9):1688–706.

    Article  Google Scholar 

  3. Samantray PK, Karthikeyan P, Reddy KS. Estimating effective thermal conductivity of two-phase materials. Int J Heat Mass Transf. 2006;49:4209–19.

    Article  Google Scholar 

  4. Côté J, Konard J-M. Assessment of structure effects on the thermal conductivity of two-phase porous geomaterials. Int J Heat Mass Transf. 2009;52:786–804.

    Article  Google Scholar 

  5. Zschiegner S, Russ S, Bunde A, Karger J. Pore opening effects and transport diffusion in the Knudsen regime in comparison to self- (or tracer) diffusion. Lett J Explor Front Phys. 2007;78:20001–5.

    Google Scholar 

  6. Stark I, Stordeur M, Syrowatka F. Thermal conductivity of thin amorphous alumina films. Thin Solids Films. 1993;226:185–90.

    Article  CAS  Google Scholar 

  7. Demirboga R, Gul R. The effects of expanded perlite aggregate silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem Concr Res. 2003;33:723–7.

    Article  CAS  Google Scholar 

  8. Fu X, Chung DDL. Effects of silica fume, latex, methylcellulose, and carbon fibers on the thermal conductivity and specific heat of cement paste. Cem Concr Res. 1997;27:1799–804.

    Article  CAS  Google Scholar 

  9. Macgree AE. Some thermal characteristics of clays. J Am Ceram Soc. 1927;10(8):561–8.

    Article  Google Scholar 

  10. Michot A, Smith DS, Degot S, Gault C. Thermal conductivity and specific heat of kaolinite: evolution with thermal treatment. J Eur Ceram Soc. 2008;28:2639–44.

    Article  CAS  Google Scholar 

  11. Cheng TW, Chiu JG. Fire-resistant geopolymer produced by granulated blast furnace slag. Miner Eng. 2003;16:205–10.

    Article  CAS  Google Scholar 

  12. Comerie DC, Kriven WM. Composite cold ceramic geopolymer in a refractory application. Ceram Trans. 2003;153:211–25.

    Google Scholar 

  13. Duxson P, Luckey GC, van Deventer JSJ. Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity. Ind Eng Chem Res. 2006;45:7781–8.

    Article  CAS  Google Scholar 

  14. Prud’Homme E, Michaud P, Joussein E, Peyratout C, Smith A, Rossignol S. In situ inorganic foams prepared from various clays at low temperature. Appl Clay Sci. 2011;51(1–2):15–22.

    Article  Google Scholar 

  15. Prud’homme E, Michaud P, Joussein E, Peyratout C, Smith A, Arri-Clacens S, Clacens JM, Rossignol S. Silica fume as porogent agent in geo-materials at low temperature. J Eur Ceram Soc. 2010;30:1641–8.

    Article  Google Scholar 

  16. Pouchon MA, Degueldre C, Tissot P. Determination of the thermal conductivity in zirconia based inert matrix nuclear fuel by oscillating differential scanning calorimetry and laser flash. Thermochim Acta. 1998;323:109–21.

    Article  CAS  Google Scholar 

  17. Gilbert B, Mainprice D. Effect of crystal preferred orientations on the thermal diffusivity of quartz polycrystalline aggregates at high temperature. Teconophysics. 2005;465:150–63.

    Article  Google Scholar 

  18. Enguehard F. Multiscale modelling of radiation heat transfer through nanoporous superinsulating materials. Int J Thermophys. 2007;28(5):1693–717.

    Article  CAS  Google Scholar 

  19. Parker WJ, Jenkins RJ, Butler CP, Abbott GL. Flash method of determining thermal diffusivity, heat capacity and thermal conductivity. J Appl Phys. 1961;32:1679–84.

    Article  CAS  Google Scholar 

  20. Lachi M, Degiovanni A. Determination des diffusivités thermiques des matériaux anisotropes par methode flash bidimensionnelle. J Appl III. 1991;1:2027–46.

    CAS  Google Scholar 

  21. Degiovanni A, Laurent M. Une nouvelle technique d’identification de la diffusivité thermique pour la methode flash. Rev Phys Appl. 1986;21:229–37.

    Article  CAS  Google Scholar 

  22. Mojumdar SC, Sain M, Prasad RC, Sun L, Venart JES. Selected thermoanalytical methods and their applications from the medicine to construction, part I. J Therm Anal Calorim. 2007;90(3):653–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors of this article would like to thank the Heterogeneous Materials Group (GMH) of the National High School of Industrial Ceramics (ENSCI), Limoges France. Also gratefully acknowledge the support of the Cluster of Excellence “Engineering of Advanced Materials” at the University of Erlangen-Nuremberg, which is funded by the German Research Foundation (DFG) within the framework of its “Excellence Initiative.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kamseu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamseu, E., Ceron, B., Tobias, H. et al. Insulating behavior of metakaolin-based geopolymer materials assess with heat flux meter and laser flash techniques. J Therm Anal Calorim 108, 1189–1199 (2012). https://doi.org/10.1007/s10973-011-1798-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1798-9

Keywords

Navigation