Skip to main content
Log in

Thermal characterization of solid lipid nanoparticles containing praziquantel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solid lipid nanoparticles (SLNs), loaded and unloaded with praziquantel (PRZ-load SLN and PRZ-unload SLN) were prepared by two different procedures: (a) oil-in-water hot microemulsion method, obtaining at 70 °C an optically transparent blend composed of surfactant, co-surfactant, and water; and (b) oil-in-water microemulsion method, dissolving the lipid in an immiscible organic solvent, emulsified in water containing surfactants and co-surfactant, and then evaporated under reduced pressure at 50 °C. The mean diameter, polydispersity index (PdI), and zeta potential were 187 to 665 nm, 0.300 to 0.655, and −25 to −28 mV respectively, depending on the preparation method. The components, binary mixture, SLNs loaded and unloaded with PRZ, and physical mixture were evaluated by differential scanning calorimetry (DSC) and thermogravimetry (TG). The non-isothermal isoconversional Flynn-Wall–Ozawa method was used to determine the kinetic parameters associated with the thermal decomposition of the samples. The experimental data indicated a linear relationship between the apparent activation energy E and the pre-exponential factor A, also called the kinetic compensation effect (KCE), allowing us to determine the stability with respect to the preparation method. Loading with PRZ increased the thermal stability of the SLNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. World Health Organization. Schistosomiasis. http://www.who.int/schistosomiasis/en. Accessed 22 Jan 2011.

  2. Jeziorski MC, Greenberg RM. Voltage-gated calcium channel subunits from platyhelminths: potential role in praziquantel action. Int J Parasitol. 2006;36(6):625–32.

    Article  CAS  Google Scholar 

  3. USP 31, NF 23. The United States Pharmacopeia and National Formulary. 2008;3056–7.

  4. The Merck Index, Merck & Co. Inc., 13th ed. New York: Whitehouse Station; 2001.

  5. Passerini N, Albertici B, Perissuti B, Rodriguez L. Evaluation of melt granulation and ultrasonic spray congealing as techniques to enhance the dissolution of praziquantel. Int J Pharm. 2006;318(1–2):92–102.

    Article  CAS  Google Scholar 

  6. Hu FQ, Zhang Y, Du YZ, Yuan H. Nimodipine loaded lipid nanospheres prepared by solvent diffusion method in a drug saturated aqueous system. Int J Pharm. 2008;348(1–2):146–52.

    Article  CAS  Google Scholar 

  7. Müller RH, Runge SA, Ravelli V, Thünemann F, Mehnert W, Souto EB. Cyclosporine-loaded solid lipid nanoparticles (SLN®): Drug–lipid physicochemical interactions and characterization of drug incorporation. Eur J Pharm Biopharm. 2008;68(3):535–44.

    Article  Google Scholar 

  8. Joshi M, Patravale V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm. 2008;346(1–2):124–32.

    Article  CAS  Google Scholar 

  9. Gasco MR. Method for producing solid lipid microspheres having a narrow size distribution. US Patent 1993;No. 5,250,236.

  10. Müller RH, Lucks JS. Medication vehicles made of solid lipid particles (solid lipid nanospheres––SLN). European Patent 1996;No. 0605497.

  11. Fricker G, Kromp T, Wendel A, Blume A, Zirkel J, Rebmann H, Setzer C, Quinkert RO, Martin F, Müller-Goymann C. Phospholipids and lipid-based formulations in oral drug delivery. Pharm Res. 2010;27:1469–86.

    Article  CAS  Google Scholar 

  12. Kristl J, Volk B, Ahlin P, Gombac K, Sentjurc M. Interactions of solid lipid nanoparticles with membranes and leukocytes studied by EPR. Int J Pharm. 2003;256:133–40.

    Article  CAS  Google Scholar 

  13. Kumar VV, Chandrasekar D, Ramakrishna S, Kishan V, Rao YM, Diwan PV. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: influence of wax and glyceride lipids on plasma pharmacokinetics. Int J Pharm. 2007;335:167–75.

    Article  CAS  Google Scholar 

  14. Lin X, Li X, Zheng L, Yu L, Zhang Q, Liu W. Preparation and characterization of monocaprate nanostructured lipid carriers. Colloids and Surf A. 2007;311:106–11.

    Article  CAS  Google Scholar 

  15. Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–77.

    Article  CAS  Google Scholar 

  16. Radomska-Soukharev A. Stability of lipid excipient in solid lipid nanoparticles. Adv Drug Deliver Rev. 2007;59:411–8.

    Article  CAS  Google Scholar 

  17. Westesen K, Bunjes H. Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix? Int J Pharm. 1995;115:129–31.

    Article  CAS  Google Scholar 

  18. Bunjes H, Unruh T. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv Drug Deliver Rev. 2007;59:379–402.

    Article  CAS  Google Scholar 

  19. Liu H, Li S, Wang Y, Yao H, Zhang Y. Effect of vehicles and enhancers on the topical delivery of cyclosporine A. Int J Pharm. 2006;311:182–6.

    Article  CAS  Google Scholar 

  20. Mainardes RM, Chaud MV, Gremião MPD, Evangelista RC. Development of praziquantel-loaded PLGA nanoparticles and evaluation of intestinal permeation by the everted gut sac model. J Nanosci Nanotechnol. 2006;6:3057–61.

    Article  CAS  Google Scholar 

  21. Luo Y, Chen D, Ren L, Zhao X, Qin J. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J Control Release. 2006;114:53–9.

    Article  CAS  Google Scholar 

  22. Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliver Rev. 2001;47:165–96.

    Article  CAS  Google Scholar 

  23. Pedersen N, Hansen S, Heydenreich AV, Kristensen HG, Poulsen HS. Solid lipid nanoparticles can effectively bind DNA streptavidin and biotinylated ligands. Eur J Pharm Biopharm. 2006;62:155–62.

    Article  CAS  Google Scholar 

  24. Mendoza AE, Companero MA, Mollinedo F, Blanco-Prieto MJ. Lipid nanomedicines for anticancer drug therapy. J Biomed Nanotechnol. 2009;5:323–43.

    Article  Google Scholar 

  25. Brown ME, Dolimore D, Galwey AK. Reactions in the solid state: comprehensive chemical kinetics. Amsterdam: Elsevier; 1980.

    Google Scholar 

  26. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand A. 1966;70:487–523.

    CAS  Google Scholar 

  27. Flynn JH, Wall J. A quick direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  28. Dahiya JB, Kumar K, Muller-Hagedorn M, Bockhom H. Kinetics of isothermal and non-isothermal degradation of cellulose: model-based and model-free methods. Polym Int. 2008;57:722–9.

    Article  CAS  Google Scholar 

  29. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.

    Article  CAS  Google Scholar 

  30. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelia Emilia de Almeida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Almeida, A.E., Souza, A.L.R., Cassimiro, D.L. et al. Thermal characterization of solid lipid nanoparticles containing praziquantel. J Therm Anal Calorim 108, 333–339 (2012). https://doi.org/10.1007/s10973-011-1814-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1814-0

Keywords

Navigation