Skip to main content
Log in

Applications of some thermo-analytical techniques to glasses and polymers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal characterization of materials provides conclusions regarding the identification of materials as well as their purity and composition, polymorphism, and structural changes. Analytical experimental techniques for thermal characterization comprise of a group of techniques, in which physical properties of materials are ascertained through controlled temperature program. Among these techniques, traditional differential scanning calorimetry (DSC) is a well-accepted technique for analyzing thermal transitions in condensed systems. Modulated DSC (MDSC) is used to study the same material properties as conventional DSC including: transition temperatures, melting and crystallization, and heat capacity. Further, MDSC also provides unique feature of increased resolution and increased sensitivity in the same measurement. “Hot disk thermal constant analyzer”, based on Transient Plane Source (TPS) technique, offers simultaneous measurement of thermal transport properties of specimen, which are directly related to heat conduction such as thermal conductivity (λ) and thermal diffusivity (χ). This method enables the thermal analysis on large number of materials from building materials to materials with high thermal conductivity like iron. The temperature range covered so far extends from the liquid nitrogen point to 1000 K and should be possible to extend further. This review also presents some interesting results of phase transition temperature of miscible (CPI/TPI) and immiscible (PS/PMMA) polymeric systems carried out through dynamic mechanical analyzer along with the thermal transport properties obtained for cis-polyisoprene (CPI), trans-polyisoprene (TPI), and their blends determined by TPS technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Reading Mike. US Patent Nos. B1 5,224,775; 5,248,199; 5,335,993;5,346,306.

  2. Gill PS, Sauerbrunn SR, Reading M. Modulated differential scanning calorimetry. J Therm Anal. 1993;40:931–9.

    Article  CAS  Google Scholar 

  3. Xu SX, Li Y, Feng YP. Numerical modeling and analysis of temperature modulated differential scanning calorimetry: on the separability of reversing heat flow from non- reversing heat flow. Thermochim Acta. 2000;343:81–8.

    Article  CAS  Google Scholar 

  4. Boller A, Schick C, Wunderlich B. Modulated differential scanning calorimetry in the glass transition region. Thermochim Acta. 1995;266:97–111.

    Article  CAS  Google Scholar 

  5. Wagner T, Kasap SO. Glass transformation, heat capacity and structure of As x Se1−x glasses studied by modulated temperature differential scanning calorimetry experimets. Phil Mag B. 1996;74:667–80.

    Article  CAS  Google Scholar 

  6. Li Y, Ng SC, Lu ZP, Feng YP, Lu K. Separation of glass transition and crystallization in metallic glasses by temperature-modulated differential scanning calorimetry. Phil Mag Lett. 1998;78:213–20.

    Article  CAS  Google Scholar 

  7. Arun Pratap, Raval KG, Awasthi AM. Kinetics of crystallization of a ternary titanium based amorphous alloy. Mater Sci Engg A. 2001;304–306:357–61.

    Google Scholar 

  8. Bruni G, Milanese C, Berbenni V, Sartor F, Villa M, Marini A. Crystalline and amorphous phases of a new drug. J Therm Anal Calorim. 2010;102:297–303.

    Article  CAS  Google Scholar 

  9. Gracia-Fernandez CA, Davies P, Gomez-Barreiro S, Lopez Beceiro J, Tarrio-Saavedra J, Artaga R. A vitrification and curing study by simultaneous TMDSC-photocalorimetry. J Therm Anal Calorim. 2010;102:1057–62.

    Article  CAS  Google Scholar 

  10. Cao J. Mathematical studies of modulated differential scanning calorimetry II. Kinetic and non-kinetic components. Thermochim Acta. 1999;325:89–95.

    Article  Google Scholar 

  11. Cao J. Mathematical studies of modulated differential scanning calorimetry I. Heat capacity measurements. Thermochim Acta. 1999;325:101–9.

    Article  CAS  Google Scholar 

  12. Verma RK, Verma L, Chandra M, Verma BP. Kinetic parameters of thermal dehydration and decomposition from thermoanalytical curves of zinc dl-lactate. J Indian Chem Soc. 1998;75:162–4.

    CAS  Google Scholar 

  13. Verma RK, Verma L, Chandra M. Thermoanalytical studies on the non-isothermal dehydration and decomposition of dl-lactates of a series of transition metals. Indian J Chem. 2003;42A:2982–7.

    CAS  Google Scholar 

  14. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  15. Matusita K, Sakka S. Kinetic study of crystallization of glass by differential scanning calorimetry. Phys Chem Glasses. 1979;20:81–4.

    CAS  Google Scholar 

  16. Matusita K, Sakka S. Kinetic study on crystallization of glass by differential thermal analysis-criterion on application of Kissinger plot. J Non-Cryst Solids. 1980;38–39:741–6.

    Article  Google Scholar 

  17. Raval KG, Lad Kirit N, Pratap A, Awasthi AM, Bhardwaj S. Crystallization kinetics of a multicomponent Fe-based amorphous alloy using modulated differential scanning calorimetry. Thermochimica Acta. 2005;425:47–57.

    Article  CAS  Google Scholar 

  18. Nahm S. Use of dynamic mechanical analysis in thermoset resin development for composite applications. Composites convention and trade show 2001, Florida, USA.

  19. Menard K. Dynamic mechanical analysis: a practical introduction. 2nd ed. U. S. A.: CRC Press; 1999.

    Book  Google Scholar 

  20. Dixit M, Gupta S, Mathur V, Sharma K, Saxena NS. Activation energy of α- and β- relaxation process of PMMA and CdS-PMMA nanocomposite. J Nanostructured Polym Nanocomposite. 2009;6:28–35.

    Google Scholar 

  21. Gustafsson SE, International Patent Appl No PCT/SE 89/100137.

  22. Gustafsson SE. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev Sci Instrum. 1991;62:797–804.

    Article  CAS  Google Scholar 

  23. Lopes AMA, Felisberti IM. Thermal conductivity of PET/(LDPE/AI) composites determined by MDSC. Polym Testing. 2004;23:637–43.

    Article  CAS  Google Scholar 

  24. Gustafsson SE, Karawacki E, Chohan Mohammad A. Thermal transport studies of electrically conducting materials using the transient hot-strip technique. J Phys D Appl Phys. 1986;19:727–35.

    Article  CAS  Google Scholar 

  25. Baboo M, Dixit M, Sharma KB, Saxena NS. The structure and thermomechanical properties of blends of trans-polyisoprene with cis-polyisoprene. Int J Polym Mater. 2009;58:636–46.

    Article  CAS  Google Scholar 

  26. Manzur A. Strain-induced crystallization in cis- and trans-polyisoprene blends: apparent crystallinity. J Macromol Sci Phys B. 1989;28:329–37.

    Article  Google Scholar 

  27. Bochathum P, Chuwnawin S. Vulcanization of cis- and trans-polyisoprene and their blends: crystallization characteristics and properties. Euro Polym J. 2001;37:429–34.

    Article  Google Scholar 

  28. Boochathum P, Prajudtake W. Vulcanization of cis- and trans-polyisoprene and their blends: cure characteristics and crosslink distribution. Euro Polym J. 2001;37:417–27.

    Article  CAS  Google Scholar 

  29. Arvanitoyannis I, Kolokuris I, Nakayama A, Aiba S-I. Preparation and study of novel biodegradable blends based on gelatinized starch and 1, 4-trans-polyisoprene (gutta percha) for food packaging or biomedical applications. Carbohyd Polym. 1997;34:291–302.

    Article  CAS  Google Scholar 

  30. Baboo M, Dixit M, Sharma K, Saxena NS. Effect of blending on mechanical and thermal transport properties of cis-polyisoprene with trans-polyisoprene. Polymer bulletin 2010; doi:10.1007/s00289-010-0378-7.

  31. Mark JE. Polymer data handbook. New York: Oxford University Press; 1999.

    Google Scholar 

  32. Jayasree TK, Predeep P, Agarwal R, Saxena NS. Thermal conductivity and thermal diffusivity of thermoplastic elastomeric blends of styrene butadiene rubber/high density polyethylene: effect of blend ratio and dynamic crosslinking. Trends in Applied science Research. 2006;1:278–91.

    Article  CAS  Google Scholar 

  33. Evseeva LE, Tanaeva SA. Thermophysical properties of epoxy composite materials at low temperatures. Cryogenics. 1995;35:277–9.

    Article  CAS  Google Scholar 

  34. Berman BL, Madding RP, Dellinger JR. Effect of crosslinking on the thermal conductivity of polystyrene between 0.3 K and 10 K. Phys Lett A. 1969;30:315–6.

    Article  CAS  Google Scholar 

  35. Morgan GJ, Scovell PD. Effective conductivity of short carbon fiber-reinforced polychloroprene rubber and mechanism of conduction. Polym Lett. 1977;15:193.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to I.U.C. for DAE facilities, Indore for providing the modulated DSC (TA Instruments, 2920) for experimentation on various amorphous alloys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Pratap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratap, A., Sharma, K. Applications of some thermo-analytical techniques to glasses and polymers. J Therm Anal Calorim 107, 171–182 (2012). https://doi.org/10.1007/s10973-011-1816-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1816-y

Keywords

Navigation