Skip to main content
Log in

Thermal and kinetic analysis of uranium salts

Part 1. Uranium (VI) oxalate hydrates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition kinetics of UO2C2O4·3H2O were studied by TG method in a flowing nitrogen, air, and oxygen atmospheres. It is found that UO2C2O4·3H2O decomposes to uranium oxides in four stages in all atmosphere. The first two stages are the same in the whole atmosphere that correspond to dehydration reactions. The last two stages correspond to decomposition reactions. Final decomposition products are determined with X-Ray powder diffraction method. Decomposition mechanisms are different in nitrogen atmosphere from air and oxygen atmosphere. The activation energies of all reactions were calculated by model-free (KAS and FWO) methods. For investigation of reaction models, 13 kinetic model equations were tested and correct models, giving the highest linear regression, lowest standard deviation, and agreement of activation energy value to those obtained from KAS and FWO equations were found. The optimized value of activation energy and Arrhenius factor were calculated with the best model equation. Using these values, thermodynamic functions (ΔH *, ΔS *, and ΔG *) were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Duvieubourg L, Nowogrocki G, Abraham F, Grandjean S. Hydrothermal synthesis and crystal structures of new uranyl oxalate hydroxides: α- and β-[(UO2)2(C2O4)(OH)2(H2O)2] and [(UO2)2(C2O4)(OH)2(H2O)2]·H2O. J Solid State Chem. 2005;178:3437–44.

    Article  CAS  Google Scholar 

  2. Aybers MT. Kinetic study of the thermal decomposition of thorium oxalate dehydrate. J Nucl Mater. 1998;252:28–33.

    Article  CAS  Google Scholar 

  3. Dollimore D, Jones LF, Nicklin T, Spooner P. Thermal decomposition of oxalates. Part 13. Surface area Changes in the thermal decomposition of uranyl oxalate. J Chem Soc Faraday Trans. 1973;69(1):1827–33.

    CAS  Google Scholar 

  4. Tel H, Bülbül M, Eral M, Altaş Y. Preperation and characterization of uranyl oxale powders. J Nucl Mater. 1999;275:146–50.

    Article  CAS  Google Scholar 

  5. Dahale ND, Chawla KL, Jayadevan NC, Venugopal V. X-ray, thermal and infrared spectroscopic studies on lithium and sodium oxalate hydrate. Thermochim Acta. 1997;293:163–6.

    Article  CAS  Google Scholar 

  6. Dahale ND, Chawla KL, Venugopal V. X-ray, thermal and infrared spectroscopic studies on potassium, rubidium and caesium uranyl oxalate hydrate. J Therm Anal Calorim. 2000;61:107–17.

    Article  CAS  Google Scholar 

  7. Rodante F, Vecchio S, Materazzi S, Vasca E. Kinetic and thermodynamic study of the Na4(UO2)2(OH)4(C2O4)2 complex. Int J Chem Kinet. 2003;35:661.

    Article  CAS  Google Scholar 

  8. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J. Thermal Anal. 1970;2:301.

    Article  CAS  Google Scholar 

  9. Küçük F, Yildiz K. The decomposition kinetics of mechanically activated alunite ore in air atmosphere by thermogravimetry. Thermochim Acta. 2006;448:107–10.

    Article  Google Scholar 

  10. Cilgi GK, Cetişli H. Thermal decomposition kinetics of aluminum sulfate hydrate. J Therm Anal Calorim. 2009;98:855–61.

    Article  CAS  Google Scholar 

  11. Boonchom B. Kinetic and thermodynamic studies of MgHPO4·3H2O by non-isothermal decomposition data. J Therm Anal Calorim. 2009;98:863–71.

    Article  CAS  Google Scholar 

  12. Ocakoğlu K, Emen FM. Thermal analysis of cis-(dithiocyanato) (1,10-phenanthroline-5,6-dione) (4,4′-dicarboxy-2,2′-bipyridyl) ruthenium(II) photosensitizer. J Therm Anal Calorim. 2011;104:1017–22.

    Article  Google Scholar 

  13. Gabal MA. Non-Isothermal studies for the decomposition course of CdC2O4–ZnC2O4 mixture in air. Thermochim Acta. 2004;412:55–62.

    Article  CAS  Google Scholar 

  14. Budrugeac P, Segal E. On the use of Diefallah’s composite integral method for the non-isothermal kinetic analysis of heterogeneous solid-gas reactions. J Therm Anal Calorim. 2005;82:677–80.

    Article  CAS  Google Scholar 

  15. Wendlant Wesley WM. Thermal analysis. 3rd ed. New York: Wiley; 1986.

    Google Scholar 

  16. Vyazovkina S, Burnhamb AK, Criadoc JM, Pérez-Maquedac LA, Popescud C, Sbirrazzuolie N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  Google Scholar 

  17. The International Centre for Diffraction Data File No. 31-1425 and 32-1403.

  18. Favergeon L, Pijolat M, Helbert C. A mechanism of nucleation during thermal decomposition of solids. J Mater Sci. 2008;43:4675–83.

    Article  CAS  Google Scholar 

  19. Galwey AK, Spinicci R, Guarini GT. Nucleation and growth process occurring during the dehydration of certain alums: the generation, the development and the function of the reaction interface. Proc R Soc Lond A. 1981;378:477.

    Article  CAS  Google Scholar 

  20. Koga N, Tanaka H. A physico-geometric approach to the kinetics of solid-state reactions as exemplified by thermal dehydration and decomposition of inorganic solids. Thermochim Acta. 2002;388:41–61.

    Article  CAS  Google Scholar 

  21. Boonchom B, Danvirutai C. Kinetics and thermodynamics of thermal decomposition of synthetic AlPO4·2H2O. J Therm Anal Calorim. 2009;98:771–7.

    Article  CAS  Google Scholar 

  22. Boonchom B. Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dihydrate. J Chem Eng Data. 2008;53:1553–8.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the 107T293(TBAG-HD/282) and 2009FBE001 projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülbanu Koyundereli Çılgı.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cetişli, H., Çılgı, G.K. & Donat, R. Thermal and kinetic analysis of uranium salts . J Therm Anal Calorim 108, 1213–1222 (2012). https://doi.org/10.1007/s10973-011-1826-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1826-9

Keywords

Navigation