Skip to main content
Log in

Thermal decomposition kinetics of polypyrrole and its star shaped copolymer

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal behavior of 2,4,6-tris(4-(1H-pyrrol-1-yl)phenoxy)-1,3,5-triazine monomer, polypyrrole, and their star shaped copolymer, were investigated using TG and DTA methods. It was found that Tria melts at 517 K and after than it starts to decompose. Decomposition proceeded in two stages which were corresponding to removal of branched groups and remaining core structure degradation, respectively. Polypyrrole and copolymer showed similar thermal behaviors. These compounds decomposed in three stages which are removal of solvent, removal of dopant anion and rest of structure decomposition. The calculation of activation energies of all reactions were realized using model-free (KAS and FWO) methods. The graphs were prepared which show the alteration of activation energy with decomposition ratio. Thermal analysis results showed that dopant anion and solvent removal activation energy values for copolymer are lower than polypyrrole. Star shaped loose-packed novel structure greatly facilitates solvent and dopant anion removal from copolymer. It can be concluded also that thermal analysis can be used as predict package structure of conducting polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chiang CK, Fincher CR Jr, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG. Electrical conductivity in doped polyacetylene. Phys Rev Lett. 1977;39:1098–101.

    Article  CAS  Google Scholar 

  2. Skotheim TA, Elsenbaumer RL, Reynolds J. Handbook of conducting polymers. 3rd ed. New York: Marcel Dekker; 2007.

    Google Scholar 

  3. Ak M, Toppare L. Synthesis of star shaped pyrrole and thiophene functionalized monomers and optoelectrochemical properties of corresponding copolymers. Mater Chem Phys. 2009;114:789–94.

    Google Scholar 

  4. Belot C, Filiatre C, Guyard L, Foissy A, Knorr M. Electrosynthesis of structured derivated polythiophenes: application to electrodeposition of latex particles on these substrates. Electrochem Commun. 2005;7:1439–44.

    Article  CAS  Google Scholar 

  5. Omastova M, Kosina S, Pionteck J, Janke A, Pavlinec J. Electrical properties and stability of polypyrrole containing conducting polymer composites. Synth Met. 1996;81:49–57.

    Article  CAS  Google Scholar 

  6. Cabala R, Skarda J, Potje-Kamloth K. Spectroscopic investigation thermal treatment of doped polypyrrole. Phys Chem Chem Phys. 2002;2:3283–91.

    Article  Google Scholar 

  7. Jakab E, Mészáros E, Omastová M. Thermal decomposition of polypyrroles. J Therm Anal Calorim. 2007;88:515–21.

    Article  CAS  Google Scholar 

  8. Hosseini SH, Entezami AA. Polypyrrole based gas sensors by mass and conductivity measurement. Iran Polym J. 1999;8:205–13.

    CAS  Google Scholar 

  9. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Thermal Anal. 1970;2:301.

    Article  CAS  Google Scholar 

  10. Çılgı GK, Cetişli H. Thermal decomposition kinetics of aluminum sulfate hydrate. J Therm Anal Calorim. 2009;98:855–61.

    Article  Google Scholar 

  11. Boonchom B. Kinetic and thermodynamic studies of MgHPO4·3H2O by non-isotehermal decomposition data. J Therm Anal Calorim. 2009;98:863–71.

    Article  CAS  Google Scholar 

  12. Rejitha KS, Mathew S. Thermoanalytical investigations of tris(ethylenediamine)nickel(II) oxalate and sulphate complexes: TG–MS and TR–XRD studies. J Therm Anal Calorim. 2010;102:931–9.

    Article  CAS  Google Scholar 

  13. Ocakoğlu K, Emen FM. Thermal analysis of cis-(dithiocyanato)(1,10-phenanthroline-5,6-dione)(4,4′-dicarboxy-2,2′-bipyridyl)ruthenium(II) photosensitizer. J Therm Anal Calorim. 2011;104:1017–22.

    Article  Google Scholar 

  14. Cetişli H, Koyundereli Çılgı G, Donat R. Thermal and kinetic analysis of uranium salts Part 1. Uranium (VI) oxalate hydrates. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1826-9.

  15. Ak M, Sulak Ak M, Toppare L. Electrochemical properties of a new star-shaped pyrrole monomer and its electrochromic applications. Macromol Chem Phys. 2006;207:1351–8.

    Google Scholar 

  16. Skaarup S, West K, Gunaratne LMWK, Vidanapathirana KP, Careem MA. Determination of ionic carriers in polypyrrole. Solid State Ionic. 2000;136–137:577–82.

    Article  Google Scholar 

  17. Ak M, Gacal B, Kiskan B, Yagci Y, Toppare L. Enhancing electrochromic properties of polypyrrole by silsesquioxane nanocages. Polymer. 2008;49:2202–10.

    Google Scholar 

  18. Xiong S, Xiao Y, Ma J, Zhang L, Lu X. Enhancement of electrochromic contrast by tethering conjugated polymer chains onto polyhedral oligomeric silsesquioxane nanocages. Macromol Rapid Commun. 2007;28:281–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülbanu Koyundereli Çılgı.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ak, M., Çılgı, G.K., Kuru, F.D. et al. Thermal decomposition kinetics of polypyrrole and its star shaped copolymer. J Therm Anal Calorim 111, 1627–1632 (2013). https://doi.org/10.1007/s10973-012-2351-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2351-1

Keywords

Navigation