Skip to main content
Log in

Hydrogen absorption kinetics of V–Al alloy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The vanadium–aluminum alloy has been prepared by aluminothermy process. The alloy ingot obtained was refined by electron beam melting and homogenized by vacuum arc melting technique. The refined alloy was crushed into small pieces. These pieces were kept isothermally in a thermobalance attached to the Sieverts apparatus for the hydrogen charging. Reacted fraction α was calculated using isothermal thermo-gravimetry method. The reacted fraction α–t data thus obtained have been linearly fitted over a suitable reaction mechanism function. Rate constants at different temperatures are determined using slope of these linearly fitted curves. Activation energy of hydrogen charging has been calculated using Arrhenius equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kumar S, Krishnamurthy N. Corrosion of Fe9Cr1Mo steel in stagnant liquid lead-lithium eutectic. Fusion Eng Des. 2012. doi:10.1016/j.fusengdes2012.01.014.

  2. Kumar S, Taxak M, Krishnamurthy N. Hydrogen absorption kinetics of V4Cr4Ti alloys prepared by aluminothermy process. Int J Hydrogen Energy. 2012;37(4):3283–91.

    Article  CAS  Google Scholar 

  3. Zhou L, Zhou Y, Sun Y. Studies on the mechanism and capacity of hydrogen uptake by physisorption-based materials. Int J Hydrogen Energy. 2006;31(2):259–64.

    Article  CAS  Google Scholar 

  4. Okada M, Kuriiwa T, Tamura T, Takamura H, Kamegawa A. Ti–V–Cr alloys with high protium content. J Alloy Compd. 2002;330–332:511–6.

    Article  Google Scholar 

  5. Lototsky MV, Yartys VA, Zavaliy IY. Vanadium-based BCC alloys: phase-structural characteristics and hydrogen sorption properties. J Alloy Compd. 2005;404–406:421–6.

    Article  Google Scholar 

  6. Wu CL, Yan YG, Chen YG, Tao MD, Zheng X. Effects of rare earths (RE) elements on V based hydrogen storage alloys. Int J Hydrogen Energy. 2008;33:93–7.

    Article  CAS  Google Scholar 

  7. Lin HC, Lin KM, Wu KC, Hsiung HH, Tsai HK. Cyclic hydrogen absorption-desorption characteristics of TiCrV and Ti0.8Cr1.2V alloys. Int J Hydrogen Energy. 2007;32:4966–72.

    Article  CAS  Google Scholar 

  8. Mazzolai G. Some physical aspects of hydrogen behavior in the H-storage bcc alloys Ti35VxCr65−x, Ti40VxMn50−xCr10 and TixCr 97.5−xMo 2.5. Int J Hydrogen Energy. 2008;33:7116–21.

    Article  CAS  Google Scholar 

  9. Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile application. Nature. 2001;414:353–8.

    Article  CAS  Google Scholar 

  10. Sakintuna B, Darkrim FL, Hirscher M. Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy. 2007;32:1121–40.

    Article  CAS  Google Scholar 

  11. Kuriiwa T, Tamura T, Amemiya T, Fuda T, Kamgawa A, Takamura H. Hydrogen storage properties of vanadium-based bcc solid solution metal hydrides. J Alloy Compd. 2003;348:252–7.

    Article  Google Scholar 

  12. Zhang Y, Ozaki T, Komaki M, Nishmura C. Hydrogen permeation characteristics of vanadium–aluminium alloys. Scr Mater. 2002;47:601–6.

    Article  CAS  Google Scholar 

  13. Tetsuya O, Zhang Y, Komaki M, Nishimura C. Hydrogen permeation characteristics of V–Ni–AI alloys. Int J Hydrogen Energy. 2003;28:1229–35.

    Google Scholar 

  14. Sanjay K, Krishnamurthy N. Synthesis of V–Ti–Cr alloys by aluminothermy co-reduction of its oxides. Int J Proc Appl Ceram. 2011;5(4):181–6.

    Google Scholar 

  15. Carlson ON, Schmidt FA, Krupp WA. A process for preparing high purity vanadium. J Met. 1966;18:320–3.

    CAS  Google Scholar 

  16. Krishnamurthy N, Sanjay K, Awasthi A. Preparation of binary alloys of refractory metals by co-reduction: group V metals alloy. RM30/1-RM30/10, 17th Plansee Seminar Proceeding, Plansee Group, Austria 2009; 1:1–10.

  17. Chou KC, Li Q, Lin Q, Jiang LJ, Xu KD. Kinetics of absorption and desorption of hydrogen in alloy powder. Int J Hydrogen Energy. 2005;30:301–9.

    Article  CAS  Google Scholar 

  18. Ozawa T. Kinetics analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–7.

    Article  CAS  Google Scholar 

  19. Muraleedharan K, Kannan MP, Ganga Devi T. Thermal decomposition kinetics of potassium iodate. J Therm Anal Calorim. 2011;103:943–55.

    Article  CAS  Google Scholar 

  20. Cho SW, Park CN, Yoo JH, Choi J, Park JS, Suh CY, Shim G. Hydrogen absorption–desorption characteristics of Ti(0.22 + x)Cr(0.28 + 1.5x)V(0.5 − 2.5x) (0 ≤ x ≤ 0.12) alloy. J Alloy Compd. 2005;403:262–6.

    Article  CAS  Google Scholar 

  21. Fukai Y. The metal–hydrogen system. Berlin/Heidelberg: Springer; 2005.

    Google Scholar 

  22. Elena D. An overview of advance materials for hydrogen storage. J Mater Proc Technol. 2005;162–163:169–77.

    Google Scholar 

  23. Taxak M, Kumar S, Krishnamurthy N, Suri AK, Tiwari GP. Effect of aluminum on the equilibrium solubility of hydrogen in vanadium. Proceedings of 3rd International Symposium on Materials Chemistry. Mumbai, India; 2010. p. 113.

  24. Wu X, Wu W, Zhou K, Cui X, Lian S. Product and non-isothermal kinetics of thermal decomposition of MgFe2(C2O4)·nH2O. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1968-9.

  25. Chen F, Sorensen OT, Meng G, Peng D. Thermal decomposition of BaC2O4·1/2H2O Studied by stepwise isothermal analysis and non-isothermal thermogravimetry. J Therm Anal Calorim. 1998;53:397–410.

    Article  CAS  Google Scholar 

  26. Illekova E, Harnuskova J, Florek R, Simancik F, Matko I, Svec P. Peculiarities of TiH2 decomposition. J Therm Anal Calorim. 2011;105(2):583–90.

    Article  CAS  Google Scholar 

  27. Dumitru R, Carp O, Budrugeac P, Niculescu M, Segal E. Non isothermal decomposition kinetics of [CoC2O4·2.5H2O]n. J Therm Anal Calorim. 2011;103(2):591–6.

    Article  CAS  Google Scholar 

  28. Suba K, Udupa MR. Solid state reaction in the potassium iodate and molybdenum(VI) oxides system. J Therm Anal Calorim. 1989;35:1191–9.

    Article  CAS  Google Scholar 

  29. Murray JL. Determination of V-Al phase diagram. Bull Alloy Phase Diagr. 1989;10(4):351–7.

    Google Scholar 

  30. Lech N, Anna A, Tomasz B, Pawel S, Stanislaw L. The kinetics of gasification of char derived from sewage sludge. J Therm Anal Calorim. 2011;104:693–700.

    Article  Google Scholar 

  31. Oriani RA. A survey of theoretical models for primary metallic solutions. J Phys Chem Solids. 1957;2:327–38.

    Article  CAS  Google Scholar 

  32. Mojumdar SC, Madhurambal G, Mariappan M, Ravindran B. Nucleation kinetics of a new nonlinear optical crystal urea-thiourea zinc chloride. J Therm Anal Calorim. 2011;104(2):901–7.

    Article  CAS  Google Scholar 

  33. Song W, Du J, Xu Y, Long B. A study of hydrogen permeation in aluminum alloy treated by various oxidation processes. J Nucl Mater. 1997;246:139–43.

    Article  CAS  Google Scholar 

  34. Wagner C. Thermodynamics of alloys. Cambridge: Addison-Wesley Press; 1952.

    Google Scholar 

  35. Hume-Rothery W. Structure of metals and alloys. London: The Institute of Metals; 1988.

    Google Scholar 

  36. Pearson WB. Lattice spacing and structures of metals and alloys. London: Pergamon Press; 1958. p. 387–8.

    Google Scholar 

  37. Voelkl J, Alefeld G. Hydrogen in metals I—basic properties. Berlin/New York: Springer; 1978.

    Google Scholar 

  38. Waisman JL, Sine G, Robinson LB. Diffusion of hydrogen in titanium alloys due to composition, temperature and stress gradients. Met Trans 1973; 291–302.

  39. Ke X, Kramer JG, Løvvik OM. The influence of electronic structure on hydrogen absorption in palladium alloys. J Phys Condens Matter. 2004;16:6267–77.

    Article  CAS  Google Scholar 

  40. Kumar S, Taxak M, Krishnamurthy N, Suri AK, Tiwari GP. Solid solubility of hydrogen in V–Al alloys. Int J Refract Met Hard Mater. 2012;31:76–81.

    Google Scholar 

  41. Sanjay Kumar and Nagaiyar Krishnamurthy, Effects of aluminum on solubility and β phase stability of vanadium-hydrogen system. Int J Refract Met Hard Mater. 2012. doi:10.1016/j.ijrmhm.2012.06.001s.

Download references

Acknowledgements

The authors record their sincere appreciation to Dr. Anamika Singh, Research Associate, Department of Biotechnology, Government of India and Mr. Samarjeet Kumar of Tata Consultancy Services, Mumbai, and Amit Tirpude from IIT Bombay for their technical assistance during the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Taxak, M. & Krishnamurthy, N. Hydrogen absorption kinetics of V–Al alloy. J Therm Anal Calorim 112, 5–10 (2013). https://doi.org/10.1007/s10973-012-2558-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2558-1

Keywords

Navigation