Skip to main content
Log in

Thermal, rheological, and structural behaviors of natural and modified cassava starch granules, with sodium hypochlorite solutions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The use of chemically modified starches is widely accepted in various industries, with several applications. In this research, natural cassava starch granules were treated with standard sodium hypochlorite solution at 0.8, 2.0, and 5.0 g Cl/100 g starch. The native and modified starch samples were investigated by means of the following techniques: simultaneous thermogravimetry–differential thermal analysis, which allowed us to verify the thermal decomposition associated with endothermic or exothermic phenomena; and differential scanning calorimetry that was used to determine gelatinization enthalpy as well as the rapid viscoamylographic analysis that provided the pasting temperature and viscosity. By means of non-contact-atomic force microscopy method and X-ray powder patterns diffractometry, it was possible to observe the surface morphology, topography of starch granules, and alterations in the granules’ crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moorthy SN. Physicochemical and functional properties of tropical tuber starches: a review. Starch/Stärke. 2002;54:559–92.

    Article  CAS  Google Scholar 

  2. Hoover R. Composition, molecular structure and physicochemical properties of tuber and root starches: a review. Carbohydr Polym. 2001;45:253–67.

    Article  CAS  Google Scholar 

  3. Schuttleworth PS, Budarin V, Clark JH. Thermal investigation of ‘molten starch’. J Therm Anal Calorim. 2011;105:577–81.

    Article  Google Scholar 

  4. Leivas CL, Costa FJOG, Almeida RR, Freitas RJS, Stertz SC, Schnitzler E. Structural characteristics, physico-chemical, thermal and pasting properties of potato (Solanum tuberosum, L.) flour: study of different cultivars and granulometries. J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2395-2.

  5. Haynes L, Schuenzel M. Flour starch thermal characteristics. Modulated scanning calorimetric studies. J Therm Anal Calorim. 2011;106:261–6.

    Article  CAS  Google Scholar 

  6. Costa FJOG, Almeida RR, Lacerda LG, Filho MASC, Bannach G, Schnitzler E. Thermoanalytical study of native cassava starch and treated with hydrogen peroxide. Alim Nutr. 2011;22:7–15.

    Google Scholar 

  7. Beninca C, Demiate IM, Lacerda LG, Filho MASC, Ionashiro M, Schnitzler E. Thermal behavior of corn starch granules modified by acid treatment at 30 and 50 °C. Ecl Quim. 2008;33:13–8.

    CAS  Google Scholar 

  8. Lacerda LG, Filho MASC, Demiate IM, Bannach G, Ionashiro M, Schnitzler E. Thermal behaviour of corn starch granules under action of fungal α-amylase. J Therm Anal Calorim. 2008;93:445–9.

    Article  CAS  Google Scholar 

  9. Rudnik E, Matuschek G, Milanov N, Kettrup A. Thermal stability and degradation of starch derivatives. J Therm Anal Calorim. 2006;85:267–70.

    Article  CAS  Google Scholar 

  10. Muhrbeck P, Eliasson AC, Salomonsson A-C. Physical characterization of bromine oxidized potato starch. Starch/Stärke. 1990;42:418–20.

    Article  CAS  Google Scholar 

  11. Harmon RE, Gupta SK, Johnson J. Oxidation of starch catalyzed by persulfate. Starch/Stärke. 2006;23:197–9.

    Article  Google Scholar 

  12. Takizawa FF, Silva GO, Konkel FE, Demiate IM. Characterization of tropical starches modified with potassium permanganate and lactic acid. Braz Arch Biol Technol. 2004;47:921–31.

    Article  CAS  Google Scholar 

  13. Wurzburg OB. Modified starches: properties and uses. Boca Raton: CRC; 1989.

    Google Scholar 

  14. Silva RM, Ferreira GF, Shirai MA, Haas A, Scherer ML, Franco CML, Demiate IM. Características físico-químicas de amidos modificados com permanganato de potássio/ácido lático e hipoclorito de sódio/ácido lático. Ciênc Tecnol Aliment. 2008;28:66–77.

    Article  CAS  Google Scholar 

  15. Zhang Y-R, Wang X-L, Zhao G-M, Wang Y-Z. Preparation and properties of oxidized starch with high degree of oxidation. Carbohydr Polym. 2012;87:2554–62.

    Article  CAS  Google Scholar 

  16. Kuakpetoon D, Wang Y-J. Characterization of different starches oxidized by hypochlorite. Starch/Stärke. 2001;53:211–8.

    Article  CAS  Google Scholar 

  17. BeMiller J, Wistler R. Starch—chemistry and technology. 3rd ed. Amsterdam: Elsevier; 2009.

  18. Bicudo SCW, Demiate IM, Bannach G, Lacerda LG, Filho MASC, Ionashiro M, Schnitzler E. Thermoanalytical study and characterization of native starches of Paraná pine seeds (Araucaria angustiofolia, Bert O. Ktze) and European chestnut seeds (Castanea sativa, Mill). Ecl Quím 2009;34:7–12.

    Google Scholar 

  19. Aggarwal P, Dollimore D. A comparative study of the degradation of different starches using thermal analysis. Talanta. 1996;43:1527–30.

    Article  CAS  Google Scholar 

  20. Soliman AAA, El-Shinnavy N, Mobarak F. Thermal behavior of oxidized starch. Thermochim Acta. 1997;296:149–53.

    Article  CAS  Google Scholar 

  21. Aggarwal P, Dollimore D. The effect of chemical modification on starch studied using thermal analysis. Thermochim Acta. 1998;324:1–8.

    Article  CAS  Google Scholar 

  22. Aggarwal P, Dollimore D. Degradation of starchy food material by thermal analysis. Thermochim Acta. 2000;357–8:57–63.

    Article  Google Scholar 

  23. Aggarwal P, Dollimore D. A thermal analysis investigation of partially hydrolyzed starch. Thermochim Acta. 1998;329:17–25.

    Article  Google Scholar 

  24. Aggarwal P, Dollimore D, Heon K. Comparative thermal analysis of two biopolymers, starch and cellulose. J Therm Anal. 1997;50:7–17.

    Article  CAS  Google Scholar 

  25. Kewtatip K, Tanrattanakul V, Mézaros K, Pavličević J, Budinski-Simendić J. Thermal properties and morphology of cassava starch grafted with different content of polystyrene. J Therm Anal Calorim. 2010;102:1035–41.

    Article  Google Scholar 

  26. Juszczak L, Fortuna T, Krok F. Non-contact atomic force microscopy of starch granules surface. Part I. Potato and tapioca starches. Starch/Stärke. 2008;55:1–7.

    Google Scholar 

  27. Juszczak L, Fortuna T, Krok F. Non-contact atomic force microscopy of starch granules surface. Part II. Selected cereal starches. Starch/Stärke. 2008;55:8–18.

    Article  Google Scholar 

  28. Zhang L, Xie W, Zhao X, Liu Y, Gao W. Study on the morphology, crystalline structure and thermal properties of yellow ginger starch acetates with different degrees of substitution. Thermochim Acta. 2009;495:57–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial resources for this study were provided by the Fundação Araucária-PR-Brazil, the FINEP-Brazil, the CAPES-Brazil, and the CNPq-Brazil, which the authors gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egon Schnitzler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beninca, C., Colman, T.A.D., Lacerda, L.G. et al. Thermal, rheological, and structural behaviors of natural and modified cassava starch granules, with sodium hypochlorite solutions. J Therm Anal Calorim 111, 2217–2222 (2013). https://doi.org/10.1007/s10973-012-2592-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2592-z

Keywords

Navigation