Skip to main content
Log in

Synthesis and hydrogen absorption kinetics of V4Cr4Ti alloy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

V4Cr4Ti alloy is synthesized by aluminothermy process followed by electron beam refining. Hydrogen absorption characteristics of the alloy have been evaluated by measuring the pressure composition isotherm (PCIT) at 57 °C temperature. Two plateau pressures are observed in the PCIT curve. Substantial decrease in the hydrogen absorption capacity of the alloy as compared to vanadium has been recorded. Hydrogen absorption kinetics of the alloy was investigated in the temperature range of 200–500 °C. Three-dimensional diffusion appears to be the rate controlling step of the hydrogen absorption. The apparent activation energy was calculated as 0.16 eV/atom-hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile application. Nature. 2001;414:353–8.

    Article  CAS  Google Scholar 

  2. Marban G, Solis TV. Towards the hydrogen economy? Int J Hydrogen Energy. 2007;32:1625–37.

    Article  CAS  Google Scholar 

  3. Sakintuna B, Darkrim FL, Hirscher M. Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy. 2007;32:1121–40.

    Article  CAS  Google Scholar 

  4. Elena D. An overview of advance materials for hydrogen storage. J Mat Proc Tech. 2005;162–163:169–77.

    Google Scholar 

  5. Gerard NN, Ono S. In L. Schlapbach (ed.) Hydrogen inIntermetallic compounds H, Chap 4. Berlin: Springer; 1992.

  6. Sanjay K, Krishnamurthy N. Corrosion of Fe9Cr1Mo steel in stagnant liquid lead-lithium eutectic. Fusion Eng Des. 2012;. doi:10.1016/j.fusengdes.

    Google Scholar 

  7. Tanaka T, Keita M, Azofeifa DE. Theory of hydrogen absorption in metal hydrides. Phys Rev B. 1981;24(4):1771–6.

    Article  CAS  Google Scholar 

  8. Zhou L, Zhou Y, Sun Y. Studies on the mechanism and capacity of hydrogen uptake by physisorption-based materials. Int J Hydrogen Energy. 2006;31(2):259–64.

    Article  CAS  Google Scholar 

  9. Lototsky MV, Yartys VA, Zavaliy IY. Vanadium-based BCC alloys: phase-structural characteristics and hydrogen sorption properties. J Alloys Comp. 2005;404–406:421–6.

    Article  Google Scholar 

  10. Muraleedharan K, Kannan MP, Ganga Devi T. Thermal decomposition kinetics of potassium iodate. J Therm Anal Calorim. 2011;103:943–55.

    Article  CAS  Google Scholar 

  11. Kuriiwa T, Tamura T, Amemiya T, Fuda T, A Kamgawa H. Takamura hydrogen storage properties of vanadium-based bcc solid solution metal hydrides. J Alloys Comp. 2003;348:252–7.

    Article  Google Scholar 

  12. Peterson DT, Nelson SO. Isopiestic solubility of hydrogen in vanadium alloys at low temperatures. Metall Trans A. 1985;16A:367–74.

    CAS  Google Scholar 

  13. Lototsky MV, Yartys VA, Zavaliy IY. Vanadium-based BCC alloys: phase-structural characteristics and hydrogen sorption properties. J Alloys Compds. 2005;404–406:421–6.

    Article  Google Scholar 

  14. Zhang Y, Ozaki T, Komaki M, Nishmura C. Hydrogen permeation characteristics of vanadium–aluminium alloys. Scripta Mater. 2002;47:601–6.

    Article  CAS  Google Scholar 

  15. Tetsuya O, Zhang Y, Komaki M, Nishimura C. Hydrogen permeation characteristics of V–Ni–AI alloys. Int J Hydrogen Energy. 2003;28:1229–35.

    Google Scholar 

  16. Song W, Du J, Xu Y, Long B. A study of hydrogen permeation in aluminum alloy treated by various oxidation processes. J Nucl Mater. 1997;246:139–43.

    Article  CAS  Google Scholar 

  17. Lin HC, Lin KM, Wu KC, Hsiung HH, Tsai HK. Cyclic hydrogen absorption-desorption characteristics of TiCrV and Ti0.8Cr1.2V alloys. Int J Hydrogen Energy. 2007;32:4966–72.

    Article  CAS  Google Scholar 

  18. Mazzolai G. Some physical aspects of hydrogen behavior in the H-Storage bcc alloys Ti35V x Cr65−x , Ti40VxMn50−x Cr10 and Ti x Cr97.5−x Mo2.5. Int J Hydrogen Energy. 2008;33:7116–21.

    Article  CAS  Google Scholar 

  19. Cho SW, Park CN, Yoo JH, Choi J, Park JS, Suh CY, Shim G. Hydrogen absorption-desorption characteristics of Ti (0.22 + x)Cr (0.28 + 1.5x) V (0.5–2.5x) (0 ≤ x ≤ 0.12) alloy. J Alloys Comp. 2005;403:262–6.

    Article  CAS  Google Scholar 

  20. Kabutomori T, Takeda H, Wakisaka Y, Ohnishi K. Hydrogen absorption properties of Ti–Cr–A (A≡V, Mo or other transition metal) B.C.C. solid solution alloys. J Alloys Compds. 1995;231:528–32.

    Article  CAS  Google Scholar 

  21. Sanjay K, Krishnamurthy N. Synthesis of V–Ti–Cr alloys by aluminothermy co-reduction of its oxides. Int J Proc App Ceram. 2011;5(4):181–6.

    Google Scholar 

  22. Carlson ON, Schmidt FA, Krupp WA. A process for preparing high purity vanadium. J Met. 1966;18:320–3.

    CAS  Google Scholar 

  23. Krishnamurthy N, Sanjay K, Awasthi A. Preparation of binary alloys of refractory metals by co-reduction: group V metals alloy. In: RM30/1-RM30/10, 17th Plansee Seminar Proceeding, Plansee Group, Austria 2009, vol 1, p. 1–10.

  24. Kumar S, Taxak M, Krishnamurthy N, Suri AK, Tiwari GP. Solid solubility of hydrogen in V–Al alloys. Int J Refract Met Hard Mater. 2012;31:76–81.

    Article  CAS  Google Scholar 

  25. Kumar S, Krishnamurthy N. Variation of activation energy of hydrogen absorption of vanadium as a function of aluminum. Int J Hydrogen Energy. 2012;37(18):13429–36.

    Article  CAS  Google Scholar 

  26. Lech N, Anna A, Tomasz B, Pawel S, Stanislaw L. The kinetics of gasification of char derived from sewage sludge. J Therm Anal Calorim. 2011;104:693–700.

    Article  Google Scholar 

  27. Kumar S, Taxak M, Krishnamurthy N. Hydrogen absorption kinetics of V4Cr4Ti alloys prepared by aluminothermy process. Int J Hydrogen Energy. 2012;37(4):3283–91.

    Article  CAS  Google Scholar 

  28. Chou KC, Li Q, Lin Q, Jiang LJ, Xu KD. Kinetics of absorption and desorption of hydrogen in alloy powder. Int J Hydrogen Energy. 2005;30:301–9.

    Article  CAS  Google Scholar 

  29. Illekova E, Harnuskova J, Florek R, Simancik F, Matko I, Svec P. Peculiarities of TiH2 decomposition. J Therm Anal Calorim. 2011;105(2):583–90.

    Article  CAS  Google Scholar 

  30. Suba K, Udupa MR. Solid state reaction in the potassium iodate and molybdenum (VI) oxides system. J Therm Anal Calorim. 1989;35:1191–9.

    Article  CAS  Google Scholar 

  31. Ozawa T. Kinetics analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–7.

    Article  CAS  Google Scholar 

  32. Kumar S, Taxak M, Krishnamurthy N. Hydrogen absorption kinetics of V–Al alloy. J Therm Anal Calorim. 2012;. doi:10.1007/s10973-012-2558-1.

    Google Scholar 

  33. Dumitru R, Carp O, Budrugeac P, Niculescu M, Segal E. Non isothermal decomposition kinetics of [CoC2O4×2.5H2O]n. J Therm Anal Calorim. 2011;103(2):591–6.

    Article  CAS  Google Scholar 

  34. Wu X, Wu W, Zhou K, Cui X, Lian S. Product and non-isothermal kinetics of thermal decomposition of MgFe2(C2O4nH2O. J Therm Anal Calorim. 2011;. doi:10.1007/s10973-011-1968-9.

    Google Scholar 

  35. Chen F, Sorensen OT, Meng G, Peng D. Thermal decomposition of BaC2O4×1/2H2O Studied by stepwise isothermal analysis and non-isothermal thermogravimetry. J Therm Anal Calorim. 1998;53:397–410.

    Article  CAS  Google Scholar 

  36. Veolkl J, Alefeld G. Hydrogen in metals I—basic properties. Berlin: Springer; 1978.

    Google Scholar 

  37. San-Martin A, Manchester FD. The Al–H (aluminium–hydrogen) system. J Phase Equilib. 1992;13(1):17–21.

    Article  CAS  Google Scholar 

  38. Waisman JL, Sine G, Robinson LB. Diffusion of hydrogen in titanium alloys due to composition, temperature and stress gradients. Met Trans. 1973;4:291–302.

    Article  CAS  Google Scholar 

  39. Ke X, Kramer JG, Løvvik OM. The influence of electronic structure on hydrogen absorption in palladium alloys. J Phys. 2004;16:6267–77.

    CAS  Google Scholar 

  40. Wu CL, Yan YG, Chen YG, Tao MD, Zheng X. Effects of rare earths (RE) elements on V based hydrogen storage alloys. Int J Hydrogen Energy. 2008;33:93–7.

    Article  CAS  Google Scholar 

  41. Wang HB, Wang Q, Dong C, Yuan L, Xu F, Sun LX. Composition design for Laves phase-related BCC-V solid solution alloys with large hydrogen storage capacities. J Phys. 2008;98(012018):1–8.

    Google Scholar 

Download references

Acknowledgements

The authors record their sincere appreciation of Dr. Anamika Singh, Research Associate, Department of Biotechnology, Government of India, Mr. Samarjeet Kumar of Tata Consultancy Services, Mumbai and Amit Tirpude from IIT Bombay for their technical assistance during the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Taxak, M. & Krishnamurthy, N. Synthesis and hydrogen absorption kinetics of V4Cr4Ti alloy. J Therm Anal Calorim 112, 51–57 (2013). https://doi.org/10.1007/s10973-012-2643-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2643-5

Keywords

Navigation